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1.	THE	STORY	OF	THE	UNIVERSE

We	dare	to	imagine	a	time	when	the	entire	observable	Universe	was	compressed
into	 a	 region	 of	 space	 smaller	 than	 an	 atom.	 And	 we	 can	 do	 more	 than	 just
imagine.	We	can	compute.	We	can	compute	how	hundreds	of	billions	of	galaxies
emerged	 from	 a	 single	 subatomic-sized	 patch	 of	 space	 dwarfed	 by	 a	 mote	 of
dust,	 and	 there	 is	 precise	 agreement	 between	 those	 computations	 and	 our
observations	 of	 the	 cosmos.	 It	 seems	 that	 human	 beings	 can	 know	 about	 the
origins	of	the	Universe.

Cosmology	is	surely	the	most	audacious	branch	of	science.	The	idea	that	the
Milky	Way,	our	home	galaxy	of	400	billion	stars,	was	once	compressed	 into	a
region	 so	 vanishingly	 small	 is	 outlandish	 enough.	 That	 the	 entire	 visible
congregation	of	billions	of	galaxies	once	occupied	such	a	subatomic-sized	patch
sounds	 like	 insanity.	 But	 to	 many	 cosmologists	 this	 claim	 isn’t	 even	 mildly
controversial.

This	 is	not	a	book	about	knowledge	handed	down	from	on	high.	More	than
anything,	it	is	about	how	we–all	of	us–can	gain	an	understanding	of	the	Universe
by	doing	science.	You	might	think	that	it’s	impossible	for	the	average	person	to
explore	 the	 Universe	 in	 much	 detail:	 don’t	 we	 need	 access	 to	 Hubble	 Space
Telescopes	 and	Large	Hadron	Colliders?	The	 answer	 is	 no,	 not	 always.	 Some
fundamental	questions	about	our	Earth,	our	Sun,	our	solar	system,	and	even	the
Universe	 beyond,	 are	 answerable	 from	 your	 back	 garden.	 How	 old	 are	 they?
How	big	are	they?	How	much	do	they	weigh?	We	will	answer	these	questions	by
doing	 science.	We	 will	 observe,	 measure	 and	 think.	 One	 of	 the	 great	 joys	 of
science	is	to	understand	something	for	the	first	time–to	really	understand,	which
is	very	different	from,	and	far	more	satisfying	than,	knowing	the	facts.	We	will
make	our	own	measurements	of	the	motion	of	Neptune,	follow	in	the	footsteps
of	the	pioneering	cosmologist	Edwin	Hubble	in	discovering	that	our	Universe	is
expanding,	 and	make	 an	 apparently	 trivial	 observation	 standing	 on	 a	 beach	 in
south	Wales.

As	the	book	unfolds,	our	gaze	will	inevitably	turn	outwards	towards	the	star-
filled	 galaxies.	 To	 understand	 them,	 we	 will	 rely	 on	 observations	 and
measurements	that	we	cannot	make	ourselves.	But	we	can	imagine	being	a	part



of	the	teams	of	astronomers	who	can.	How	far	away	are	the	stars	and	galaxies?
How	big	 is	 the	Universe?	What	 is	 it	made	 of?	What	was	 it	 like	 in	 the	 distant
past?	The	answers	to	these	questions	will	generate	a	cascade	of	new	ideas,	and,
before	the	book	is	finished,	we	will	be	equipped	to	enquire	about	the	origins	of
the	Universe.	Science	is	an	enchanting	journey	of	exploration.	It	is	an	exciting,
rewarding	 process	 and	 one	 that	 leaves	 scientists	with	 a	 feeling	 of	 being	 better
connected	to	the	world	around	them.	It	leaves	a	sense	of	awe	and	humility	too;	a
feeling	 that	 the	 world	 is	 beautiful	 beyond	 imagination	 and	 that	 we	 are	 very
privileged	to	be	here	to	witness	it.

Before	we	begin	our	journey,	however,	we	will	allow	ourselves	a	glimpse	of
the	destination.	What	follows	next	is	the	story	of	how	our	Universe	evolved	from
a	subatomic	patch	of	space	into	the	oceans	of	galaxies	we	see	today.	Perhaps,	by
the	end	of	the	book,	you	will	judge	that	it	might	just	be	true.

Consider	the	Universe	before	the	Big	Bang.	By	‘Big	Bang’	we	mean	a	time	13.8
billion	years	 ago	when	all	 the	material	 that	makes	up	 the	observable	Universe
came	 into	 being	 in	 the	 form	 of	 a	 hot,	 dense	 plasma	 of	 elementary	 particles.
Before	 this	 time,	 the	 Universe	 was	 very	 different.	 It	 was	 relatively	 cold	 and
devoid	of	particles,	 and	 space	 itself	was	 expanding	very	 rapidly,	which	means
that	any	particles	 it	may	have	contained	were	moving	away	from	each	other	at
high	 speeds.	The	average	distance	between	particles	was	doubling	every	10−37
seconds.	This	 is	a	 staggering,	almost	 incomprehensible,	 rate	of	expansion:	 two
particles	one	centimetre	apart	at	one	instant	were	separated	by	10	billion	metres
only	4	×	10−36	seconds	later;	more	than	twenty	times	the	distance	from	the	Earth
to	the	Moon.	We	do	not	know	for	how	long	the	Universe	expanded	like	this,	but
it	 continued	 for	 at	 least	 10−35	 seconds.	 This	 pre-Big	 Bang	 phase	 of	 rapid
expansion	is	known	to	cosmologists	as	the	epoch	of	inflation.

Let	us	focus	on	a	tiny	speck	of	space	a	billion	times	smaller	than	a	proton,	the
atomic	nucleus	of	a	hydrogen	atom.	At	first	glance,	there	is	nothing	particularly
special	 about	 this	 tiny	 patch.	 It	 is	 one	 small	 part	 of	 a	 much	 larger,	 inflating
Universe,	and	 it	 looks	much	 the	same	as	all	 the	other	patches	 that	 surround	 it.
The	only	reason	this	particular	patch	deserves	our	attention	is	that	it	is	destined,
over	 13.8	 billion	 years,	 to	 grow	 into	 our	 observable	 Universe:	 the	 region	 of
space	 containing	 all	 the	 galaxies	 and	 quasars	 and	 black	 holes	 and	 stars	 and
planets	and	nebulae	visible	from	Earth	today.	The	Universe	is	far	bigger	than	the
observable	Universe,	but	we	can’t	see	it	all	because	light	can	only	travel	a	finite
distance	in	13.8	billion	years.



Before	 the	 Big	 Bang,	 the	 Universe	 was	 filled	 with	 something	 called	 the
‘inflaton’	field;	a	material	thing,	like	a	still	ocean	filling	space.	The	gravitational
effect	of	the	energy	stored	in	the	inflaton	field	caused	the	Universe’s	exponential
expansion,	 and	 this	 is	 the	 origin	 of	 its	 name:	 it	 is	 the	 field	 responsible	 for
inflating	the	Universe.	On	the	whole,	the	inflaton	field	remained	undisturbed	as
the	Universe	expanded,	but	it	was	not	perfectly	uniform.	It	had	tiny	ripples	in	it,
as	required	by	the	laws	of	quantum	physics.

By	the	time	our	observable	Universe	was	the	size	of	a	melon,	 the	period	of
inflation	 was	 drawing	 to	 a	 close	 as	 the	 energy	 driving	 it	 drained	 away.	 This
energy	was	not	lost,	however;	it	was	converted	into	a	sea	of	elementary	particles.
In	 an	 instant,	 a	 cold,	 empty	 Universe	 became	 a	 hot,	 dense	 one.	 This	 is	 how
inflation	 ended	 and	 the	Big	Bang	 began,	 delivering	 a	Universe	 filled	with	 the
particles	that	were	destined	to	evolve	into	galaxies,	stars,	planets	and	people.

We	do	not	currently	know	which	particles	were	present	at	the	moment	of	the
Big	Bang,	but	we	do	know	that	 the	heaviest	particles	soon	decayed	to	produce
the	 lighter	 ones	 we	 know	 today:	 electrons,	 quarks,	 gluons,	 photons,	 neutrinos
and	dark	matter.1	We	can	also	be	confident	about	the	particles	that	populated	the
Universe	when	it	was	around	a	trillionth	of	a	second	old,	because	we	are	able	to
re-create	 these	 conditions	 on	Earth,	 at	 the	Large	Hadron	Collider.2	This	 is	 the
time	when	empty	space	became	filled	with	the	Higgs	field,	which	caused	some
of	the	elementary	particles	to	acquire	mass.3	The	weak	nuclear	force,	responsible
for	 the	 reactions	 that	 allow	 the	 stars	 to	 shine,	 became	 distinct	 from	 the
electromagnetic	force	at	this	time.

A	millionth	of	a	second	after	the	Big	Bang,	when	the	hot	plasma	had	cooled
to	 10	 trillion	 degrees	 celsius,	 the	 quarks	 and	 gluons	 formed	 into	 protons	 and
neutrons,	 the	 building	 blocks	 of	 atomic	 nuclei.	 Although	 this	 primordial
Universe	 consisted	 of	 an	 almost	 uniform	 soup	 of	 particles,	 there	 were	 slight
variations	in	the	density	of	the	soup–an	imprint	of	the	quantum-induced	ripples
in	 the	 inflaton	 field.	 These	 variations	were	 the	 seeds	 from	which	 the	 galaxies
would	later	grow.

One	minute	after	the	Big	Bang,	at	around	a	billion	degrees,	the	Universe	was
cool	enough	for	some	of	the	protons	and	neutrons	to	cluster	together	in	pairs	to
form	 deuterium	 nuclei.	Most	 of	 these	 then	went	 on	 to	 partner	with	 additional
protons	and	neutrons	 to	 form	helium	and,	 in	 tiny	amounts,	 lithium.	This	 is	 the
epoch	of	nucleosynthesis.

For	the	next	100,000	years	or	so,	little	happened	as	the	Universe	continued	to
expand	 and	 cool.	 Towards	 the	 end	 of	 this	 time,	 however,	 the	 dark	 matter



gradually	began	 to	clump	around	 the	 seeds	 sown	by	 the	 ripples	 in	 the	 inflaton
field.	Regions	 of	 the	Universe	where	 there	was	 a	 slight	 excess	 of	 dark	matter
grew	denser,	 as	 their	gravity	pulled	 in	yet	more	matter	 from	 the	 surroundings.
This	is	the	start	of	the	gravitational	clumping	of	matter	that	will	eventually	lead
to	 the	 formation	 of	 galaxies.	 Meanwhile,	 photons,	 electrons	 and	 the	 atomic
nuclei	bounced	and	zig-zagged	around,	hitting	each	other	so	frequently	that	they
formed	something	resembling	a	fluid.	After	380,000	years,	when	the	observable
Universe	was	a	thousand	times	smaller	than	it	is	today,	temperatures	dropped	to
those	found	on	the	surface	of	an	average	sun-like	star,	cool	enough	for	electrons
to	 be	 captured	 in	 orbit	 around	 the	 electrically	 charged	 hydrogen	 and	 helium
nuclei.	Suddenly,	across	 the	Universe,	 the	first	atoms	formed	and	 the	Universe
underwent	a	rapid	transition	from	a	hot	plasma	of	electrically	charged	particles
to	 a	 hot	 gas	 of	 electrically	 neutral	 particles.	 This	 had	 dramatic	 consequences,
because	 photons	 interact	 far	 less	with	 electrically	 neutral	 atoms.	The	Universe
became	 transparent,	which	means	 the	photons	 stopped	zig-zagging	around	and
started	 to	 head	 off	 in	 straight	 lines.	 The	 majority	 of	 these	 photons	 continued
onwards,	travelling	in	straight	lines	for	the	next	13.8	billion	years.	Some	of	them
are	 just	 arriving	 at	 our	 Earth	 today	 in	 the	 form	 of	microwaves.	 These	 ancient
photons	are	messengers	from	the	earliest	times,	and	they	carry	a	treasure	trove	of
information	that	cosmologists	have	learnt	to	decode.

As	the	Universe	continued	to	expand,	its	denser	regions,	composed	mainly	of
dark	 matter,	 became	 ever	 denser	 under	 the	 action	 of	 gravity.	 Hydrogen	 and
helium	atoms	clustered	around	the	dark	matter,	and	swirling	atomic	clouds	grew
until	 the	 densest	 regions	 collapsed	 inwards,	 increasing	 the	 pressure	 and
temperature	at	their	core	to	such	an	extent	that	they	became	nuclear	furnaces;	the
fusion	 of	 hydrogen	 into	 helium	 was	 initiated,	 and	 stars	 formed	 across	 the
Universe.	 A	 hundred	 million	 years	 after	 the	 Big	 Bang,	 the	 cosmic	 dark	 ages
came	to	an	end	and	the	Universe	was	flooded	with	starlight.	The	most	massive
stars	 had	 brief	 lives	 and,	 as	 they	 ran	 out	 of	 hydrogen	 fuel,	 they	 began	 to	 fuse
heavier	 elements	 in	 an	 ultimately	 futile	 battle	 with	 gravity:	 carbon,	 oxygen,
nitrogen,	 iron–the	 elements	 of	 life–were	made	 this	way.	When	 the	 fuel	 finally
ran	out,	 these	 stars	 scattered	 the	newly	minted	heavy	elements	across	 space	as
they	ended	their	lives	as	bright	planetary	nebulae	or	exploding	supernovae.	In	a
final	 flourish,	 the	 violent	 shock	 of	 each	 exploding	 supernova	 synthesized	 the
heaviest	elements,	 including	gold	and	silver.	New	stars	formed	from	the	debris
of	the	old,	and	congregated	in	their	hundreds	of	billions	in	the	first	galaxies.	The
galaxies,	 numbered	 in	 hundreds	 of	 billions,	 were	 moulded	 into	 the	 giant



filamentary	webs	 that	 criss-cross	 the	Universe	 by	 the	 gravitational	 pull	 of	 the
dominant	dark	matter.

4.6	billion	years	ago	in	the	Milky	Way	galaxy,	a	gas	cloud	enriched	in	stellar
debris	collapsed	to	form	our	Sun.	Shortly	afterwards,	the	Earth	formed	from	the
remains	of	 the	 cloud.	Then,	 4	billion	years	 ago,	 in	 a	 great	 ocean	 created	 from
hydrogen	formed	in	the	first	minute	of	the	Universe’s	life	and	oxygen	forged	in
long-dead	stars,	the	geochemistry	of	the	young	Earth	became	biochemistry:	life
began.	 In	 1687	 Isaac	 Newton	 published	 the	 Principia	 Mathematica.	 We’ve
obviously	skipped	a	bit	of	biology.

This	 is	 the	 broad	 outline	 of	 the	 story	 of	 the	 evolution	 of	 the	 Universe,	 from
before	 the	Big	Bang	 to	 Isaac	Newton.	 It	 seems	 that	 collections	 of	 atoms	 on	 a
cooling	 cinder,	 in	 possession	 of	 a	 precious	 thing	 called	 science	 for	 barely	 an
instant,	have	found	a	way	to	glimpse	the	fires	of	creation.	The	rest	of	this	book	is
the	story	of	how	we	did	it.



2.	HOW	OLD	ARE	THINGS

The	Earth	is	4.55	billion	years	old,	give	or	take	50	million	years.	This	is	a	figure
consistent	 with	 independent	 measurements	 of	 the	 age	 of	 the	 Universe,	 which
place	 the	 Big	 Bang	 13.8	 billion	 years	 ago.	 It	 is	 also	 consistent	 with	 physical
biological	 evidence	 and	 our	 understanding	 of	 evolution	 by	 natural	 selection,
which	 suggest	 that	 the	 first	 living	 things	 appeared	 on	Earth	 around	3.8	 billion
years	ago.	The	life	cycles	of	stars	fit	into	this	timeline	too.	The	age	of	our	Sun	is
estimated	at	4.6	billion	years,	and	similar	stars	are	predicted	to	live	for	around	10
billion	 years	 before	 they	 die.	More	massive	 stars	 have	much	 shorter	 lifetimes.
There	must	have	been	time	for	at	least	some	stars	to	live	and	die	before	the	Earth
formed,	 because	 the	 Earth	 is	 made	 out	 of	 heavy	 chemical	 elements	 like	 iron,
carbon	 and	 oxygen:	 elements	 that	 are	 made	 inside	 stars.	 Leaping	 forward	 in
time,	 the	 basalt	 columns	 of	 the	 Giant’s	 Causeway	 in	 Ireland	 were	 formed	 60
million	 years	 ago,	 around	 the	 time	 the	 dinosaurs	 became	 extinct.	 The	 oldest
living	tree	is	a	bristlecone	pine	that	lives	in	the	White	Mountains	in	California.	It
is–as	of	2016–5066	years	old.

All	 these	 dates	 are	 determined	 using	 very	 different	 kinds	 of	 science,	 but,
remarkably–impressively–they	 fit	 together	 without	 contradiction.	 There	 is
nothing	 special	 about	 this	 particular	 list;	 we	 chose	 this	 eclectic	 bunch	 simply
because	they	reflect	a	variety	of	different	‘old’	things,	and	we	could	have	chosen
a	different	list.	This	raises	the	question:	how	do	we	know	how	old	something	is?
Age	is	not	a	trivial	thing	to	determine,	especially	for	very	old	things,	because	it
must	be	 inferred	 indirectly.	We	can’t	 sit	 around	and	watch	while	 the	Universe
evolves	from	the	hot	plasma	of	its	birth.	We	can’t	even	point	to	direct	evidence
for	the	age	of	the	oldest	tree;	nobody	was	around	to	write	about	it	and	record	the
date	 when	 it	 was	 a	 tiny	 sapling.	 But	 we	 don’t	 need	 to	 have	 been	 present:
knowledge	can	be	acquired	indirectly	if	we	do	a	little	detective	work	to	collect
evidence	and	then	apply	simple	logic	to	draw	conclusions.	This	book	is	all	about
taking	a	scientific	approach	to	securing	knowledge	of	the	world	around	us.	This
approach	 is	 incremental–a	 framework	 of	 knowledge	 grows	 over	 time	 as	 we
understand	more	about	the	Universe–and	it	sits	in	stark	opposition	to	haphazard
thinking:	 you	 don’t	 build	 a	 computer	 by	 trial	 and	 error	 and	 you	 are	 prone	 to



mistakes	if	you	don’t	entertain	the	likelihood	that	you	may	be	wrong.	We	trust
our	 lives	 to	 scientific	 knowledge,	 in	 hospitals	 and	 aeroplanes,	 and	 exactly	 the
same	type	of	thinking	can	be	used	to	great	effect	elsewhere	in	our	lives.	In	this
book,	we	will	show	how	far	it	is	possible	to	travel	in	understanding	the	Universe
by	 taking	 simple,	 reasoned	 steps	 coupled	 with	 careful	 observations.	 In	 this
chapter,	we	are	going	to	begin	by	exploring	the	science	that	allows	us	to	measure
the	age	of	things	with	such	confidence	and	precision.

Let’s	begin	with	the	age	of	the	Earth.	A	very	obvious	way	to	start	is	to	look	at
what	we	can	see:	to	ask	whether	there	are	any	features	on	the	Earth’s	surface	that
might	give	us	a	clue	to	its	age.	To	take	a	careful	look	at	Nature,	in	other	words,
and	see	what	we	can	work	out	from	simple	observation.	For	example,	we	know
that	 river	 valleys	 are	 cut	 by	 flowing	 water,	 and	 that	 coastlines	 are	 subject	 to
erosion.	 These	 are	 features	 that	 change	 with	 time;	 therefore,	 observing	 them
carefully	 and	 understanding	 the	 physical	 processes	 that	 formed	 them	 should
allow	us	to	estimate	their	ages.	On	larger	scales	still,	could	the	familiar	shapes	of
the	 continents	 and	 oceans	 also	 tell	 us	 something	 about	 the	 way	 they	 have
evolved,	and	how	long	it	has	taken	them	to	do	so?



Figure	2.1	The	Mid-Atlantic	Ridge.



Figure	2.1	 is	a	map	of	 the	Atlantic	Ocean	and	 the	 landmasses	 that	surround	 it.
South	America	and	Africa	in	particular	look	as	if	they	fit	together.	Let’s	suppose
this	 fit	 is	 no	 accident	 and	 make	 a	 proposal:	 the	 continents	 were	 snuggled
together	 at	 some	 time	 in	 the	 past,	 and	 have	 been	 gradually	moving	 apart	 ever
since.	If	this	theory	is	correct,	then	we	can	make	a	rough	estimate	of	the	age	of
the	Atlantic	Ocean.	Of	course,	this	isn’t	a	new	idea–Alfred	Wegener’s	idea	of	a
global-supercontinent	 that	broke	up	over	 time	as	a	 result	of	continental	drift	 is
over	 100	 years	 old.	 The	 point	 here,	 and	 throughout	 this	 book,	 is	 that	 we	 can
uncover	the	science	for	ourselves–we	want	to	follow	in	the	footsteps	of	the	great
scientists,	 to	 appreciate	 how	 irresistible	 progress	 comes	 from	 simple	 thoughts.
As	a	first	step,	we	need	to	confirm	that	the	broad	outline	of	our	hypothesis	(that
South	America	 and	Africa	were	once	 joined	and	have	been	moving	apart	 ever
since)	is	plausible	by	checking	whether	the	Atlantic	is	still	growing	today.	If	 it
is,	we	 can	measure	 the	 current	 rate	 of	 separation	 of	 the	 continents,	 and–if	we
make	the	further	assumption	that	this	rate	has	stayed	constant	since	the	time	that
the	continents	began	to	separate–we	will	be	able	to	make	an	estimate	of	the	age
of	the	Atlantic.	There	are	a	lot	of	assumptions	here,	but	let’s	get	on	with	it	and
see	what	we	find.

If	 we	 were	 very	 committed	 experimentalists,	 we	 could	 measure	 the
movements	 of	 the	 continents	 ourselves.	 We	 could	 pack	 a	 couple	 of	 GPS
receivers	 into	 a	 rucksack,	 fly	 to	 the	 eastern	 coast	 of	 Brazil,	 fix	 one	 of	 the
receivers	 to	 the	 ground,	 fly	 back	 across	 the	 Atlantic	 to	 northwest	 Africa–a
distance	of	around	4000	km–and	set	up	the	second	GPS	receiver.	Over	the	next
few	years,	we	could	monitor	how	the	receivers	move	relative	to	each	other.	We
don’t	 need	 to	 do	 this,	 because	 geologists	 have	 already	 been	 making	 such
measurements	 for	 many	 years.	 Quite	 wonderfully,	 apart	 from	 using	 GPS
receivers,	 the	 distance	 between	 North	 America	 and	 Europe	 has	 also	 been
measured	using	a	pair	of	 radio	 telescopes	(one	 in	Europe	and	one	 in	 the	USA)
each	 focused	 on	 a	 distant	 quasar.	Quasars	 are	 active	 galactic	 nuclei	 that	most
probably	 originate	 as	 matter	 accretes	 onto	 super-massive	 black	 holes	 in	 the
centres	of	galaxies,	 and	 they	are	among	 the	brightest	objects	 and	 therefore	 the
most	distant	we	can	see.	Because	 they	are	so	far	away,	 they	serve	as	excellent
fixed	points	on	the	sky,	which	is	important	for	triangulating	the	distance	between
Europe	and	the	USA.	We	describe	the	measurement	in	a	little	more	detail	in	Box
1.	Do	you	remember	those	school	science	experiments	where	you	had	to	begin
with	 the	 heading	 ‘Apparatus:	 two	 large	 radio	 telescopes	 and	 a	 grid	 system
comprising	active	galactic	nuclei	over	a	billion	light	years	from	Earth’?



Figure	2.3	shows	a	summary	of	the	results	measuring	the	present-day	rates	at
which	the	various	tectonic	plates	are	moving.	It	shows	that	the	Atlantic,	between
northern	Brazil	and	northwest	Africa,	is	currently	expanding	at	a	rate	of	2.5	cm
per	year,	which	is	the	speed	at	which	fingernails	grow.

BOX	1.	MEASURING	CONTINENTAL	DRIFT

The	distance	between	 two	 radio	 telescopes	on	 the	Earth’s	 surface
can	be	determined	using	a	technique	known	as	Very	Long	Baseline
Interferometry.	The	two	telescopes	look	at	the	same	distant	object	in
the	 sky,	 and	 from	 the	 difference	 in	 arrival	 time	 of	 light	 signals–
determined	 using	 very	 precise	 clocks	 accurate	 to	 1	 second	 in	 1
million	 years–the	 distance	 between	 the	 telescopes	 can	 be
determined	 to	millimetre	accuracy.	Quasars	are	 so	bright	 that	 they
are	visible	at	distances	of	many	billions	of	light	years,	and	being	so
far	 away	 guarantees	 that	 they	 appear	 still	 during	 the	 time	 of	 the
measurement.	 Over	 twenty	 years,	 telescopes	 in	 Westford,
Massachusetts,	 and	 Wettzell,	 Germany,	 have	 been	 used	 to
determine	the	rate	at	which	the	Atlantic	is	opening	between	Europe
and	 the	 United	 States.	 The	 data	 are	 shown	 in	 Figure	 2.2,	 which
shows	 a	 rate	 of	 spreading	 in	 this	 region	 of	 1.7	 cm/year.	 Satellite
laser	 ranging,	which	 involves	bouncing	 laser	 light	off	satellites,	and
GPS	measurements	are	also	used	along	the	length	of	the	North	and
South	Atlantic,	and	give	consistent	results.

Figure	2.2	The	steady	rate	at	which	Germany	and	the	USA	have	been



Figure	2.2	The	steady	rate	at	which	Germany	and	the	USA	have	been

receding	from	each	other	in	the	recent	past,	as	measured	by	a	pair	of

radio	telescopes	trained	on	distant	astronomical	objects.



Figure	2.3	How	the	continents	are	moving	around.	The	numbers	and	arrows

indicate	the	rate	and	direction	of	movement,	in	centimetres	per	year.



Working	 on	 the	 assumption	 that	 the	 continents	 have	 always	 been	 moving
apart	at	this	rate,	we	can	now	estimate	the	age	of	the	Atlantic	Ocean:	4000	km	×
40	 years/metre	 =	 160	million	 years.	 If	 this	 figure	 is	 a	 good	 estimate,	 then	we
now	 also	 have	 a	 minimum	 age	 for	 the	 Earth–because	 obviously	 it	 can’t	 be
younger	than	the	Atlantic	Ocean.

We’ve	 just	 done	 what	 could	 be	 described	 as	 a	 ‘back	 of	 the	 envelope’
calculation.	 Obviously,	 we’d	 like	 to	 know	 if	 our	 number	 is	 anywhere	 near
correct;	after	all,	we	did	make	a	bold	assertion	and	a	very	bold	assumption.	We
asserted	that	the	continents	were	once	part	of	a	single	landmass	and	assumed	that
they	 have	 been	moving	 apart	 at	 a	 steady	 rate	 ever	 since.	 Let’s	 examine	 these
assumptions	more	closely	and	try	to	judge	how	reasonable	they	are.

Look	back	at	the	map	in	Figure	2.1.	It	also	shows	the	topology	of	the	Atlantic
Ocean’s	floor.	The	great	range	of	underwater	mountains	running	down	the	centre
is	 called	 the	 Mid-Atlantic	 Ridge.	 This	 ridge	 clearly	 mirrors	 the	 shape	 of	 the
continents	 on	 either	 side;	 it’s	 also	 bang	 in	 between	 the	 two	 continents,	 in	 the
middle	 of	 the	Atlantic,	 and	 is	 currently	 spewing	out	material	 from	 the	Earth’s
interior:	 lava	 that	 solidifies	 and	 forms	a	crust.	This	 suggests	 a	mechanism	 that
could	explain	why	the	continents	are	continuing	to	move	apart	today:	new	ocean
crust	is	being	formed	along	the	Mid-Atlantic	Ridge.

All	of	which	seems	to	indicate	that	our	assertion	is	in	good	shape.	We	could,
of	 course,	 have	been	 fooled	by	 a	 series	 of	 coincidences:	 (i)	 that	 the	 coastlines
appear	to	fit	together	and	match	the	shape	of	the	Mid-Atlantic	Ridge;	(ii)	that	the
Mid-Atlantic	 Ridge	 lies	 midway	 between	 the	 continents;	 (iii)	 that	 the	 lava
erupting	 from	 the	 Mid-Atlantic	 Ridge	 has	 nothing	 to	 do	 with	 the	 currently
observed	widening	of	 the	ocean.	But	 although	we	 can	be	pretty	 confident	 that
these	 are	 not	 simply	 coincidences,	 nothing	we	 have	 established	 so	 far	 implies
that	the	separation	of	these	two	continents	has	been	proceeding	at	the	same	rate
for	 over	 a	 hundred	 million	 years,	 and	 we	 must	 admit	 that,	 at	 this	 stage,	 this
assumption	is	a	blind	guess.



Figure	2.4	The	ages	of	the	sea-floor	rocks.



BOX	2.	SEAFLOOR	SPREADING

The	age	of	sea-floor	rocks	in	the	Atlantic	is	determined	by	exploiting
the	 fact	 that	 sea-floor	 basalt	 is	 magnetized	 in	 a	 stripy	 pattern,	 as
shown	 in	Figure	2.5.	The	stripes,	 typically	some	 tens	of	 kilometres
wide,	are	formed	as	new	rock	spews	out	of	the	ridge	and	becomes
magnetized	 by	 the	 Earth’s	magnetic	 field.	When	 the	 rock	 freezes,
the	 magnetic	 orientation	 gets	 frozen	 within	 it.	 The	 stripes	 appear
because	 the	 Earth’s	 magnetic	 field	 flips	 its	 direction	 from	 time	 to
time,	and	these	changes	of	direction	are	encoded	 in	 the	rocks.	We
can	 therefore	 map	 the	 temporal	 evolution	 of	 the	 sea	 floor	 by
measuring	 the	 barcode-like	 pattern	 of	 stripes,	 known	 as	 ‘polarity
chrons’,	so	 long	as	we	have	some	method	of	setting	 the	 timescale
for	 the	 flips	 in	 the	 Earth’s	 magnetic	 field.	 And	 we	 do:	 radiometric
dating	 methods	 have	 been	 used	 to	 date	 rocks	 in	 other	 locations,
such	as	on-land	lava	flows.	The	barcode	patterns	match.

Figure	2.5	The	ages	of	rocks	forming	along	a	rift	valley,	such	as	the	one

running	along	the	Mid-Atlantic	Ridge.	The	barcode	stripes	are	very

distinctive	and	are	due	to	the	fact	that	the	Earth	flips	its	magnetic	field

around	every	so	often.

In	 December	 1968	 and	 January	 1969,	 the	 Glomar	 Challenger,	 a
scientific	 research	 drill-ship,	 acquired	 a	 very	 important	 dataset	 by



drilling	 a	 series	 of	 seventeen	 holes	 in	 the	 equatorial	 and	 South
Atlantic,	 many	 of	 them	 traversing	 the	 Mid-Atlantic	 Ridge.	 The
samples	 the	 Glomar	 Challenger	 collected	 were	 dated	 mainly	 by
paleontological	methods,	which	involved	looking	for	tiny	fossils	in	the
sample	cores	and	matching	them	with	known	stages	in	the	evolution
in	 the	 flora	 and	 fauna	 of	 the	 oceans	 (whose	 ages	 themselves	 are
fixed	using	radiometric	methods).	The	shipboard	scientists	 involved
analysed	the	cores	and	found	an	age–distance	relationship	from	the
Mid-Atlantic	Ridge	that	is	remarkably	consistent	with	the	assumption
that	the	sea	floor	has	been	spreading	at	a	constant	rate.	They	found
sediments	sitting	directly	above	the	sea-floor	with	ages	ranging	from
10	million	years	for	samples	200	km	from	the	ridge,	all	the	way	to	70
million	 years	 for	 samples	 taken	 1300	 km	 from	 the	 ridge,
corresponding	to	a	sea-floor	spreading	rate	of	close	to	2	cm/year.

So	 let’s	 bring	 in	 some	 serious	 science.	 For	 decades,	 geoscientists	 have
meticulously	examined	ocean	floors	across	the	globe	and	determined	the	age	of
the	 rocks	 on	 the	 seabed.	 This	 is	 a	 difficult	 task,	 and	 requires	 some	 beautiful
science	that	we	will	discuss	in	a	moment	(see	also	Box	2).	For	now,	let	us	just
present	 the	data,	which	is	shown	in	Figure	2.4.	There	 is	a	very	clear	pattern	 in
the	Atlantic:	the	youngest	rocks	lie	along	the	Mid-Atlantic	Ridge;	the	oldest	are
to	be	found	bordering	the	continents.	This	fits	very	nicely	with	our	proposal	that
the	Atlantic	was	formed	by	sea-floor	spreading	from	the	Mid-Atlantic	Ridge;	if
we	are	right,	 the	rocks	on	the	seabed	should	indeed	get	progressively	older	 the
further	we	 travel	 from	the	ridge.	Notice	also	 that	 there	are	no	sharp	 transitions
where	 the	 rocks	 suddenly	 get	much	 older,	 nor	 are	 there	 any	 extended	 regions
where	the	rocks	are	all	the	same	age.	This	is	what	we	would	expect	if	the	rate	at
which	 new	 rock	 is	 being	 formed	 along	 the	Mid-Atlantic	 Ridge	 has	 remained
roughly	 constant	 during	 the	 time	 that	 the	 continents	 have	 been	moving	 apart.
The	final	observation	we	can	make	is	 to	look	at	 the	age	of	the	rocks	lining	the
ocean	floors	along	the	edges	of	the	continents.	These	are	dated	to	be	around	180
million	years	old–in	broad	agreement	with	our	back-of-the-envelope	calculation.

We	haven’t	yet	described	how	we	go	about	dating	rocks	directly.	But	we	can
say	 that	 our	 suggestion	 that	 the	Atlantic	Ocean	was	 created	 by	 the	 continents
drifting	 apart	 due	 to	 geological	 activity	 along	 the	 Mid-Atlantic	 Ridge	 is
consistent	with	the	measured	age	of	the	rocks	on	the	ocean	floor.



Logical	 consistency	 and	 the	 accumulation	 of	 evidence	 are	 very	 important
features	of	 the	way	modern	science	works.	Consider,	 for	example,	what	would
happen	to	our	previous	logic	if	the	Atlantic	were	significantly	younger	than	160
million	years.	For	the	sake	of	argument,	let’s	go	with	Bishop	James	Ussher,	and
say	it	 is	around	10,000	years	old.	This	rather	casual	 level	of	precision	is	doing
the	good	bishop	a	disservice,	because	he	was	very	specific.	He	asserted	that	the
world	was	created	on	the	evening	of	22	October	4004	BC.	The	bishop	performed
his	calculations	in	the	late	seventeenth	century,	using	historical	records	and	the
Bible.	We,	on	the	other	hand,	are	operating	on	the	back	of	an	envelope,	which
means	we	are	content	to	work	with	round	numbers.

If	 we	 want	 to	 accommodate	 an	 Atlantic	 that	 is	 10,000	 years	 old,	 but	 still
accept	 that	 the	 two	continents	were	both	close	 together	at	some	point,	 then	 the
rate	 at	which	 the	 continents	moved	 apart	would	 have	 had	 to	 have	 been	much
faster	than	the	currently	observed	2.5	cm	per	year.	Instead,	we	would	require	an
expansion	rate	of	 the	order	of	400	metres	per	year	for	most	of	 the	10,000-year
period.

The	problem	with	an	expansion	rate	of	400	metres	per	year	is	that	the	rocks
along	the	Atlantic	shores	are	measured	to	be	180,000	years	old,	a	date	that	is	in
good	 agreement	 with	 the	 2.5	 cm	 per	 year	 spreading	 rate.	 If	 we	 insisted	 on	 a
10,000-year-old	 Earth,	 then	 it	 must	 follow	 that	 the	 rock	 ages	 are	 wrong	 by
precisely	the	same	factor	as	the	spreading	rate	estimate	is	wrong.	This	would	be
quite	a	coincidence.

With	Bishop	Ussher’s	dating	still	in	mind,	a	second	possibility	might	be	that
the	continents	were	never	in	fact	close	together,	but	instead	they	were	originally
created	 4000	 km	 apart,	 10,000	 years	 ago.	 In	 that	 scenario,	 the	 fact	 that	 the
observed	drift	rate	of	2.5	cm	per	year	just	happens	to	be	consistent	with	the	age
inferred	from	dating	 the	 rocks	must	be	 regarded	as	a	meaningless	coincidence,
not	least	because	we	would	also	need	to	reject	as	wrong	the	methods	used	to	date
the	rocks.	In	addition,	we’d	also	have	to	suppose	that	the	two	continents	and	the
Mid-Atlantic	Ridge	all	fit	together	quite	by	accident.	It	is	clear	then	that	the	case
for	a	young	Earth	requires	we	reject	the	most	obvious	interpretation	of	the	facts
and	 appeal	 instead	 to	 coincidence	 and	 error.	We	 have	 only	 been	 studying	 the
case	of	the	Atlantic	Ocean	so	far	and	we	will	meet	some	more	examples	of	very
old	things	in	due	course.	It	is	up	to	you	to	judge	the	extent	to	which	the	evidence
is	convincing.

The	 reason	 that	 it	 is	 so	 difficult	 to	make	 an	 argument	 against	 the	Atlantic
Ocean	 being	 around	 160	million	 years	 old	 is	 that	 independent	 measurements,



relying	on	completely	different	science,	combine	to	provide	a	consistent	picture
of	what	happened.	It	is	easy	to	cook	up	a	scenario,	however	fanciful,	that	casts
doubt	 on	 some	 measurement	 or	 other.	 But	 it	 is	 usually	 extremely	 difficult	 to
argue	for	a	radical	change	in	one	area	without	making	large	parts	of	 the	whole
interlinked	edifice	inconsistent.	Given	that	the	scientific	edifice	is	also	the	thing
that	 keeps	 your	 lights	 on,	 keeps	 aircraft	 in	 the	 sky	 and	makes	 your	 computer
work,	 this	 is	 not	 usually	 a	 sustainable	 position	 to	 take.	 Our	modern	 scientific
world-view	is	a	universal	one,	and	 this	 is	a	key	reason	why	 it	 is	so	robust	and
successful.

One	 of	 the	 most	 precise	 ways	 of	 dating	 old	 rocks	 is	 through	 radiometric
techniques.	 The	 key	 idea	 is	 that	 certain	 types	 of	 atoms	 are	 radioactive,	which
means	that	they	can	spontaneously	transform	into	atoms	of	a	different	type.	(In
Box	3	(pp.	41–6),	we	provide	a	primer	on	the	basics	on	atoms	and	radioactivity.)
This	transformation	process	is	known	as	radioactive	decay.	If	we	know	the	rate
at	which	a	particular	type	of	atom	decays,	then	by	counting	the	number	of	those
atoms	present	in	a	rock	sample	we	can	obtain	a	measure	of	how	much	time	has
passed	since	it	was	formed.	We	do	not	need	to	know	what	causes	atoms	to	decay
(for	 that	we	have	 to	understand	some	quantum	physics);	we	 just	need	 to	know
the	 rate	 at	 which	 atoms	 decay,	 which	 is	 called	 the	 half-life.	 The	 half-life
expresses	how	long,	on	average,	it	takes	for	half	the	atoms	in	a	sample	to	decay.
For	 example,	 if	we	 know	 that	 a	 rock	 sample	 initially	 contained	N	 radioactive
atoms,	 and	 we	 measure	 that	 it	 currently	 contains	 N/4	 atoms–that’s	 to	 say,	 a
quarter	of	 the	radioactive	atoms	originally	present–we	can	deduce	 immediately
that	two	half-lives	have	elapsed	since	the	rock	was	formed.

Some	atoms	have	short	half-lives	of	much	less	than	one	second;	others	have
long	half-lives,	 reaching	 into	 the	billions	of	years.	 If	we	want	 to	determine	 the
age	of	a	rock,	 the	best	way	would	be	to	count	atoms	whose	half-life	 is	not	 too
different	from	the	age	of	that	rock.	If	the	half-life	is	much	less	than	the	age,	most
of	the	radioactive	atoms	will	have	decayed	away,	and	we	will	have	a	difficult	job
counting	the	small	number	that	remain.	If	the	half-life	is	much	greater	than	the
age,	very	few	atoms	will	have	decayed	and	we	might	struggle	to	determine	any
significant	 deviation	 from	 the	 initial	 number.	 None	 of	 this	 would	 be	 of	 any
practical	use	 if	 radioactive	atoms	were	 rarely	 found	 in	 rocks.	Fortunately,	 they
are	relatively	common.

You	may	have	already	noticed	 that	 there	could	be	a	 flaw	 in	our	plan.	How
could	we	possibly	 know	how	many	 radioactive	 atoms	were	 present	 in	 a	 given



rock	 when	 it	 first	 formed?	 This	 might	 seem	 to	 scupper	 the	 half-life	 dating
procedure.	However,	there	is	a	beautiful	way	to	sidestep	the	problem,	known	as
the	isochron	method.

In	 order	 to	 understand	 the	 isochron	 method,	 let’s	 look	 at	 a	 specific	 atom,
rubidium-87,	which	we	will	 write	 as	 87Rb.	 Rubidium	 is	 chemically	 similar	 to
potassium,	about	as	abundant	as	zinc,	 and	often	 found	 in	common,	potassium-
rich	minerals	 in	 rocks.	 It	 is	 radioactive,	with	a	very	 long	half-life	of	48	billion
years.	Being	barely	 radioactive	 is	 a	bonus	 for	dating	 the	oldest	 rocks	on	Earth
because,	 as	 we	 will	 see,	 they	 have	 ages	 of	 several	 billion	 years.	 When	 a
rubidium	atom	decays,	 it	converts	 into	an	atom	of	strontium-87	(87Sr).	We	can
count	the	numbers	of	87Rb	and	87Sr	atoms	in	a	sample	of	rock.	The	clever	part	of
the	 isochron	method	 is	 to	 exploit	 the	 existence	of	 a	different	 sort	 of	 strontium
atom,	 strontium-86.	 87Sr	 and	 86Sr	 are	 different	 isotopes	 of	 strontium;	 the	 only
difference	is	that	86Sr	has	1	less	neutron	in	its	nucleus.	This	means	that	they	are
chemically	identical–and	this	 is	crucially	important.	Also	crucially,	86Sr	cannot
be	produced	through	radioactive	decay,	which	means	that	any	86Sr	now	present
in	the	rock	sample	was	there	when	it	was	originally	formed.



Figure	2.6	Two	isochron	plots	used	to	date	the	ages	of	rocks.	The	upper	one

is	for	samples	taken	from	the	chondrite	meteorite	Tieschitz	that	fell	in	what	is

now	the	Czech	Republic	in	1878.	The	lower	one	is	for	samples	taken	from

Isua	in	Greenland.



In	 a	 sample	 from	 the	 rock	we	want	 to	 date,	we	 count	 the	 number	 of	 87Rb
atoms	and	divide	by	the	number	of	86Sr	atoms.	We	also	count	the	number	of	87Sr
atoms	and	divide	that	by	the	number	of	86Sr	atoms.	We	mark	these	two	ratios	as
a	point	on	a	graph,	as	shown	in	Figure	2.6.	We	repeat	this	counting	process	for
several	 different	 samples,	 each	 taken	 from	 the	 rock	 we	 want	 to	 date.	 The
different	samples	might	be	chunks	of	rock	taken	from	a	large	bed,	or	they	might
be	 samples	 of	 different	 minerals	 taken	 from	 the	 same	 piece	 of	 rock.	 If	 the
samples	 are	 all	 absolutely	 identical	 to	 each	 other,	 then	we	will	 find	 the	 same
87Rb	to	86Sr	ratios	in	all	of	them,	and	this	will	simply	generate	lots	of	points	on
top	of	each	other	on	the	graph.	But	if	the	different	samples	had	differing	initial
amounts	of	87Rb,	then	the	ratios	will	be	different	and	we	will	get	several	points
on	our	graph.

The	striking	thing	about	 the	graphs	shown	in	Figure	2.6–which	contain	real
data–is	that	the	different	points,	corresponding	to	different	initial	concentrations
of	 rubidium	 atoms	 in	 each	 sample,	 lie	 on	 a	 straight	 line.	 This	 is	 not	 a
coincidence;	in	fact,	it’s	the	clever	bit.

To	 understand	what	 is	 happening	 here,	 imagine	 that	 we	make	 an	 isochron
plot	 immediately	after	 the	 rock	has	 formed	 from	a	molten	 state.	Since	 the	 two
isotopes	of	strontium	have	identical	chemical	properties,	the	ratio	87Sr/86Sr	will
be	the	same	initially	in	every	sample.	For	example,	if	there	are	7	87Sr	atoms	for
every	 10	 86Sr	 atoms	 throughout	 the	 initial	molten	mix,	 then	 this	 ratio	will	 be
preserved	 in	 every	mineral	within	 every	 newly	 solidified	 rock	 sample.	 This	 is
because	there	is	no	reason	for	any	particular	mineral	to	form	using	one	strontium
isotope	over	the	other,	since	the	two	strontium	isotopes	are	chemically	identical.
This	means	that	at	time-zero,	just	after	the	rock	forms,	the	isochron	plot	will	be	a
horizontal	straight	line.	This	is	illustrated	in	Figure	2.7.	The	Rb/Sr	ratio	will	vary
because	rubidium	and	strontium	are	chemically	different	from	each	other.	If	one
sample	is	taken	from	a	potassium-rich	mineral,	for	example,	it	is	likely	to	have
more	rubidium	than	a	sample	taken	from	a	mineral	with	less	potassium,	because
rubidium	 behaves	 like	 a	 potassium	 substitute.	 We	 therefore	 expect	 the	 initial
Rb/Sr	ratio	to	vary	with	the	potassium	content	of	the	different	mineral	samples.

As	 time	 advances,	 rubidium	 atoms	 decay;	 as	 a	 result,	 the	 amount	 of	 87Sr
inside	the	rock	starts	to	rise.	This	means	that	a	point	on	the	original	plot	moves
to	the	left	by	an	amount	proportional	to	the	number	of	rubidium	atoms	that	have
decayed.	The	point	also	moves	upwards	by	exactly	the	same	amount,	because	for
every	decaying	Rb	atom	a	new	atom	of	87Sr	is	created.	This	happens	for	all	the
original	points,	and	results	in	the	line	tilting	from	the	horizontal,	as	illustrated	in



Figure	2.7.	As	more	time	passes	since	the	rock	was	formed,	the	line	tilts	further.
If	there	was	no	initial	rubidium	present	in	the	sample	then	there	can	never	be	any
new	strontium	generated,	 so	 the	 left-hand	point	on	 the	 line	must	 stay	 fixed,	as
indicated	in	the	figure.	Crucially,	the	points	should	remain	on	a	straight	line.	The
line	simply	tilts	with	time,	and	the	tilt	from	the	horizontal	is	what	tells	us	the	age
of	the	sample.

Figure	2.7	Illustrating	how	the	line	on	an	isochron	plot	tilts	away	from	the

horizontal	as	time	passes.	Point	A	moves	to	A’	and	B	moves	to	B’.

This	is	how	the	ingenious	isochron	method	works.	We	never	needed	to	know
the	initial	concentrations	of	any	of	the	atoms;	we	simply	need	a	set	of	different
samples,	with	different	initial	concentrations	of	rubidium	and	strontium.

We’ll	 show	what	we	mean.	 Suppose	we	 happen	 to	measure	 the	 rock’s	 age
after	1	half-life	of	rubidium–which	is	admittedly	difficult,	because	that’s	longer
than	 the	age	of	 the	Universe,	but	we	are	going	for	simple	mathematics.	 In	 this
case,	a	point	on	the	initial	isochron	moves	halfway	to	the	left,	because	there	are
half	as	many	Rb	atoms	as	there	were	initially.	The	point	also	moves	upwards	by
exactly	 the	 same	 amount	 (because	 an	 equal	 number	 of	 new	 87Sr	 atoms	 are



created).	This	corresponds	to	a	tilt	of	45	degrees	to	the	horizontal.	An	isochron
tilted	at	45	degrees	therefore	means	that	one	half-life	has	elapsed.

For	 those	 who	 want	 a	 bit	 more	 detail:	 if	 g	 is	 the	 fraction	 of	 the	 original
rubidium	that	has	decayed	since	the	rock	was	formed,	then	a	point	on	the	initial
horizontal	 isochron	 moves	 to	 the	 left	 a	 distance	 g	 times	 its	 initial	 value	 and
moves	up	by	the	same	distance.	This	means	the	tangent	of	the	tilt	relative	to	the
horizontal	is	g/(1–g).	This	is	very	nice,	because	g	depends	only	upon	the	half-life
and	 the	 time	 since	 the	 sample	was	 formed.	Measuring	g	 from	 the	 slope	of	 the
graph	 tells	 us	 the	 age	 of	 the	 sample	 without	 us	 needing	 to	 know	 how	 much
rubidium	or	 strontium	was	 initially	 present	 in	 it.	 For	 the	 case	 of	 the	meteorite
illustrated	 in	 Figure	 2.6,	 the	 tangent	 of	 the	 tilt	 is	 approximately	 (0.7325–
0.699)/0.5	=	0.067.	This	implies	g	is	0.063,	which	means	there	have	been	m	half-
lives	where	(1/2)m	=	1–0.063	=	0.937,	which	tells	us	that	m	=	0.094.	Since	the
half-life	 of	 rubidium	 is	 48	 billion	 years,	 this	 particular	 rock	 (multiplying	 48
billion	by	0.094)	is	dated	at	4.5	billion	years	old.

The	isochron	method	represents	a	beautifully	simple	piece	of	science.	It	tells
us	 how	much	 time	 has	 passed	 since	 the	 isochron	was	 horizontal,	which	 is	 the
time	the	rock	cooled	and	turned	solid.	In	order	for	the	points	on	the	isochron	to
fall	on	a	straight	line	it	must	be	the	case	that	for	every	Rb	atom	that	decays	in	the
rock	a	new	87Sr	atom	appears.	Moreover,	the	rock	has	to	have	acted	like	a	sealed
capsule,	 so	 that	 no	 Rb	 or	 Sr	 atoms	 entered	 or	 left	 it	 following	 its	 original
formation.	If	the	rock	has	not	behaved	like	a	sealed	capsule	then	the	points	will
not	line	up	in	a	straight	line.	This	is	nice,	because	it	allows	us	to	check	whether
the	rock	interacted	with	its	environment	in	some	way,	which	is	an	indication	that
the	dating	will	be	unreliable.	The	flip	side	is	that	if	the	data-points	do	all	line	up
we	 can	 be	 supremely	 confident	 that	we	 are	measuring	 the	 time	 since	 the	 rock
was	 last	 in	 a	molten	 state.	 The	 isochron	method	 is	 self-checking,	 which	 adds
greatly	to	the	confidence	we	can	have	in	its	results.

The	North	Atlantic	craton	is	an	ancient	part	of	the	Earth’s	crust	that	is	exposed
in	Greenland,	 the	coast	of	Labrador	 in	northern	Canada	and	parts	of	northwest
Scotland.	 It	 is	 primarily	 composed	 of	 granitoid	 gneiss,	 a	 type	 of	metamorphic
rock,	which	means	it	was	formed	from	other	rocks	under	very	high	temperatures
and	 pressures.	 The	 lower	 plot	 in	 Figure	 2.6	 shows	 a	 rubidium–strontium
isochron	 for	 samples	 taken	 from	 the	 North	 Atlantic	 craton	 in	 Isua,	 on	 the
southwest	coast	of	Greenland.	The	data	points	lie	on	a	straight	line,	which	tells
us	 that	 the	 rock	 has	 not	 been	 altered	 significantly	 since	 its	 formation.	 The



gradient	 of	 the	 line	 dates	 the	 rock	 samples	 to	 a	 common	 age	 of	 3.66	 billion
years,	 with	 an	 uncertainty	 of	 0.06	 billion	 years.	 If	 you	 followed	 through	 the
calculation	above	you	will	be	able	to	get	this	age	for	yourself.

Many	 other	 samples	 have	 been	 dated	 across	 the	 North	 Atlantic	 craton,
sometimes	using	different	radioactive	atoms	and	their	 isochrons.	The	measured
ages	 vary	 mainly	 between	 2.6	 and	 3	 billion	 years,	 but	 the	 most	 ancient	 are
around	 3.8	 billion	 years	 old.	 These	 ages	 are	 consistent	 with	 the	 most	 ancient
rocks	found	at	sites	elsewhere	in	the	world.	The	oldest	known	rocks	are	found	in
the	 Slave	 craton,	 in	 northwest	 Canada,	 and	 are	 close	 to	 4	 billion	 years	 old.
Zircon,	 a	 mineral	 that	 contains	 small	 amounts	 of	 radioactive	 uranium	 and
thorium,	 can	be	dated	by	 several	methods,	 including	 a	uranium–lead	 isochron.
Zircon	grains	have	been	found	in	Jack	Hills	in	Western	Australia	that	are	4.404
billion	years	old,	with	an	uncertainty	of	0.008	billion	years.	These	are	the	oldest
materials	that	have	been	found	on	Earth.

No	intact	crust	has	been	found	that	is	older	than	4	billion	years.	This	may	be
due	to	the	fact	that	the	hot,	young	Earth	vigorously	reprocessed	its	crust,	thereby
resetting	the	radiometric	clocks	in	the	rocks.	Perhaps	this	reprocessing	was	aided
by	a	heavy	bombardment	of	meteorites–or,	possibly,	older	rocks	do	exist	and	we
haven’t	 found	 them	 yet.	 Zircon	 grains	 can	 remain	 intact	 in	 more	 extreme
conditions	 than	most	 rocks,	which	 is	probably	why	 they	have	been	discovered
with	 significantly	 older	 isochron-derived	 ages.	 In	 any	 case,	 the	 radiometric
dating	of	rocks	and	zircon	grains	allows	us	to	claim	that	the	Earth	is	at	least	4.4
billion	years	old.

But	what	exactly	do	we	mean	by	‘the	age	of	 the	Earth’?	Presumably	it	did	not
form	in	an	instant.	We	can	avoid	the	difficult	question	of	the	Earth’s	birthday	if
the	 planetary	 formation	 process	 was	 not	 too	 lengthy	 compared	 to	 its	 age.
Theoretical	modelling	of	planetary	formation	suggests	 that	 this	 is	 the	case,	and
that	a	mere	0.1	billion	years	is	the	absolute	upper	limit	on	the	time	it	would	have
taken	 for	 the	 Earth	 to	 form	 from	 the	 solar	 nebula.	 Going	 further,	 we	 might
suppose	 that	 all	 of	 the	 planets	 in	 the	 solar	 system	are	 approximately	 the	 same
age,	because	 they	all	 formed	 from	 the	 same	nebula.	This	 is	 something	we	can
test,	because	we	have	many	rock	samples	from	space,	in	the	form	of	meteorites,
and	four	tonnes	of	Moon	rocks	returned	by	the	Apollo	astronauts.	Many	of	these
samples	have	been	dated	using	isochron	methods.

The	youngest	Moon	rocks	are	found	to	be	3.2	billion	years	old;	the	oldest	are
4.5	billion	years	old.	Twelve	samples	have	ages	older	than	4.2	billion	years,	with



an	 uncertainty	 of	 around	 0.1	 billion	 years.	 The	 geology	 of	 these	 rocks	 is
consistent	with	them	having	formed	as	the	lunar	crust	cooled,	and	indicate	that
the	Moon	is	4.53	billion	years	old.	The	radiometric	dating	of	almost	a	hundred
meteorites,	 such	as	 the	Tieschitz	meteorite	we	met	above,	 reveals	 that	 the	vast
majority	formed	between	4.4	and	4.6	billion	years	ago,	while	the	younger	ones
show	 clear	 evidence	 of	 severe	 shock-heating	 and	 metamorphism,	 which	 will
have	reset	the	radiometric	clocks.	Bringing	all	the	data	together,	including	dates
from	 another	 precision	 technique	 called	 lead-isotopic	 dating,	 the	 current	 best
measurement	of	the	age	of	the	Earth	is	4.55	billion	years,	with	an	uncertainty	of
0.02	billion	years.

Figure	2.8	The	Barringer	Crater	in	Arizona.	It	is	1.2	km	in	diameter	and	was

made	by	the	impact	of	a	meteorite,	known	as	Canyon	Diablo;	over	10	tonnes

of	meteorite	have	been	recovered	from	the	neighbourhood.	Typically,	around

one	meteorite	of	size	1	metre	hits	the	Earth	every	year	and,	fortunately,

impacts	from	meteorites	bigger	than	1	km	in	size	are	expected	to	occur	once



impacts	from	meteorites	bigger	than	1	km	in	size	are	expected	to	occur	once

every	million	years	or	so.

We	could	stop	here,	satisfied	that	we	have	a	precision	measurement	of	the	age	of
the	 Earth	 gleaned	 from	material	 taken	 from	 different	 sites,	 and	 cross-checked
using	rocks	from	the	Moon	and	meteorites	that	have	been	wandering	through	the
solar	 system	 untouched	 and	 uncontaminated	 since	 their	 formation,	 using	 a
variety	 of	 radiometric	 dating	methods.	 In	 the	 spirit	 of	 this	 book,	 however,	we
should	 ask	 if	 there	 is	 some	 other,	 completely	 independent,	 measurement	 that
does	 not	 rely	 on	 radioactive	 decay.	And,	wonderfully,	 there	 is	 such	 a	method.
We	can	measure	the	age	of	the	Sun.

The	Sun	shines	by	releasing	energy	through	the	nuclear	fusion	of	hydrogen	into
helium.	 Fusion	 also	 took	 place	 in	 the	 first	 few	 minutes	 in	 the	 life	 of	 the
Universe,	creating	the	primordial	helium	that	constitutes	a	quarter	of	the	visible
matter	 present	 in	 the	 Universe	 today	 (the	 remaining	 three	 quarters	 being
hydrogen).	When	 the	Sun	 formed,	 its	 initial	composition	 roughly	 reflected	 this
universal	 ratio	of	hydrogen	 to	helium,	but,	over	 time,	 the	fraction	of	helium	in
the	Sun	increased	as	the	Sun	burned.	If	we	can	measure	the	amount	of	helium	in
the	Sun	that	has	been	produced	by	fusion	reactions	in	its	core,	and	if	we	know
the	rate	of	those	reactions,	then	we	can	estimate	the	age	of	the	Sun	by	calculating
how	long	it	would	take	to	make	that	amount	of	helium.

This	sounds	like	a	tall	order.	We	can	hardly	go	to	the	Sun,	dig	into	its	core
and	take	samples.	(As	we’ll	see	in	Chapter	3,	it	is	challenge	enough	to	work	out
the	composition	of	the	Earth.)	Remarkably,	however,	studies	of	the	Sun	over	the
past	 fifty	 years	 have	 allowed	 scientists	 to	 investigate	 its	 interior,	 using	 a
technique	known	as	helioseismology.	Pressure	waves	in	the	Sun	cause	it	to	ring
like	a	bell,	and	analysing	the	way	that	it	vibrates	allows	for	its	composition	to	be
deduced.1	 The	 method	 is	 not	 unlike	 the	 way	 you	 might	 ascertain	 whether
something	is	hollow	by	knocking	it.	These	studies	indicate	that	around	4.2%	of
the	 Sun’s	 total	 mass	 is	 helium	 that	 has	 been	 produced	 as	 a	 result	 of	 nuclear
fusion.	Figure	2.9	shows	how	the	helium	abundance	changes	with	distance	from
the	centre	of	the	Sun.	You	can	see	that	it	increases	towards	the	core	and	that	it
levels	off	at	around	27%,	which	is	close	to	the	fraction	we	expect	to	be	present
as	a	 result	of	helium	formation	shortly	after	 the	Big	Bang	(we’ll	have	more	 to
say	about	Big	Bang	Nucleosynthesis	 in	Chapter	6).	The	dark	 shaded	 region	 in
the	figure,	at	radii	smaller	than	about	0.2,	is	the	helium	produced	through	fusion.



We	need	now	to	work	out	how	long	it	would	take	for	 the	Sun	to	make	that
much	 helium.	We	 can	 estimate	 this	 because	 we	 know	 the	 Sun’s	 total	 energy
output,	 and	 we	 know	 how	 much	 energy	 is	 released	 by	 the	 fusion	 of	 four
hydrogen	atoms	into	one	helium	atom.	Let’s	deal	with	each	of	these	in	turn.

The	Sun	radiates	energy	at	a	rate	of	3.9	×	1026	watts,	a	number	first	measured
to	 a	 reasonable	 accuracy	 in	 1838	 by	 the	French	 physicist	Claude	Pouillet.	 It’s
relatively	simple	to	do:	you	could	make	an	estimate	yourself	using	some	water,	a
thermometer,	 a	watch	 and	 a	 bucket.	 The	 basic	 idea	 is	 to	measure	 how	 long	 it
takes	 direct	 sunlight	 falling	 on	 the	 Earth	 to	 raise	 the	 temperature	 of	 a	 known
volume	of	water,	with	a	known	surface	area,	by	1	degree.	This	enables	you	 to
estimate	 how	 much	 solar	 energy	 per	 square	 metre	 per	 second	 arrives	 at	 the
Earth’s	position	in	space,	93	million	miles	away	from	the	Sun.	This	quantity	is
known	 as	 the	 solar	 constant.	 Modern	 measurements	 of	 the	 solar	 constant	 are
made	by	satellites	above	the	Earth’s	atmosphere,	but	you’ll	get	it	to	within	10%
or	so	if	you	perform	the	measurements	at	the	top	of	a	mountain	and	are	careful
with	 your	mathematics	 and	your	 bucket–as	Pouillet	was.	The	 solar	 constant	 is
approximately	1.36	kilowatts	per	 square	metre,	 and	varies	by	about	0.1%	with
changes	in	solar	activity	and	by	about	7%	over	the	course	of	a	year,	due	to	the
eccentricity	 of	 the	 Earth’s	 orbit.	 The	 total	 solar	 energy	 output	 can	 then	 be
calculated,	if	you	know	the	distance	from	the	Earth	to	the	Sun.	(We’ll	see	how
this	can	be	measured	in	Chapter	3.)



Figure	2.9	The	helium	fraction	in	the	Sun	(by	mass).	There	is	a	clear	excess	in

the	core,	i.e.	for	radii	less	than	20%	of	the	Sun’s	radius.	This	is	the	result	of

hydrogen	fusing	into	helium.	The	residual	level	at	27%	is	the	helium	that	was

present	in	the	swirling	gas	out	of	which	the	Sun	formed.

Figure	2.10	The	reactions	that	dominate	helium-4	production	in	the	Sun.	The

fusion	of	two	protons	to	produce	a	deuteron	yields	0.42	MeV.	The	emitted

positron	annihilates	with	a	nearby	electron	to	liberate	a	further	1.02	MeV.	And



the	fusion	of	the	deuteron	with	another	proton	to	produce	helium-3	yields	5.49

MeV.	Two	of	these	chains	yields	a	total	of	2	×	(0.42	+	1.02	+	5.49)	=	13.86

MeV.	Finally,	the	two	helium-3	nuclei	fuse	to	produce	the	helium-4	nucleus,

with	a	further	12.86	MeV	of	energy	released.	The	net	effect	of	all	of	these

nuclear	fusion	reactions	is	for	four	protons	to	convert	into	one	helium	nucleus

with	the	release	of	26.72	MeV	in	energy.

The	details	of	the	fusion	chain	that	leads	to	helium	production	in	the	Sun	are
illustrated	in	Figure	2.10.	It’s	quite	complicated,	but	the	final	answer	is	simple.
Four	 hydrogen	 nuclei	 are	 consumed	 to	 make	 one	 helium	 nucleus,	 and	 in	 the
process	26.7	MeV	of	energy	is	released,2	of	which	98%	is	radiated	away	as	light.
The	missing	2%	of	the	energy	is	carried	away	by	neutrinos.

Because	 the	 Sun	 is	 releasing	 energy	 at	 a	 rate	 of	 3.9	 ×	 1026	 watts,	 we	 can
deduce	 that	 it	 is	making	3.9	×	1026/(26.72	×	1.6	×	10−13)	=	9.1	×	1037	helium
nuclei	per	second.	If	we	suppose	 that	 the	Sun	has	been	doing	this	ever	since	 it
was	born,	then	we	can	deduce	that	the	age	of	the	Sun	is	equal	to	the	total	mass	of
helium	 produced	 by	 fusion	 divided	 by	 the	 mass	 of	 helium	 produced	 every
second,	which	is	4.2%	×	1.99	×	1030	kg	/	(6.64	×	10−27	kg	×	9.1	×	1037)	seconds.
We	have	taken	1.99	×	1030	kg	for	the	mass	of	the	Sun	and	6.64	×	10−27	kg	for
the	mass	 of	 one	 helium	 nucleus.	 This	 gives	 us	 an	 age	 of	 1.4	 ×	 1017	 seconds,
which	is	equal	to	4.4	billion	years.3	Amazing!

We	 are	 surely	 allowed	 an	 exclamation	 mark.	 We	 have	 set	 great	 store	 on
achieving	 consistency	 between	 scientific	 results.	 Here	 we	 have	 presented	 a
calculation	for	the	age	of	the	Sun	that	uses	our	understanding	of	nuclear	fusion
reactions,	 a	 measurement	 of	 the	 amount	 of	 solar	 energy	 falling	 on	 the	 Earth
every	 second,	 the	 distance	 of	 the	 Earth	 to	 the	 Sun	 and	 measurements	 of	 the
amount	of	helium	in	 the	Sun.	This	calculation	gives	an	age	consistent	with	 the
age	of	the	oldest	rocks	on	Earth	and	on	the	Moon,	and	the	ages	of	meteorites	that
have	fallen	on	the	Earth.	These	were	calculated	using	our	understanding	of	 the
radioactive	 decay	 of	 heavy	 atoms,	 which	 is	 a	 completely	 different	 physical
process.	Remarkably,	we	have	found	that	the	ages	of	the	Sun	and	Earth	are	very
nearly	the	same,	which	fits	perfectly	with	the	idea	that	they	were	formed	out	of
the	same	cloud	of	collapsing	gas	and	dust	around	4.6	billion	years	ago.

BOX	3.	EVERYTHING	IS	MADE	OF	ATOMS



If,	in	some	cataclysm,	all	scientific	knowledge	were	to	be	destroyed,
and	 only	 one	 sentence	 passed	 on	 to	 the	 next	 generations	 of
creatures,	what	statement	would	contain	the	most	information	in	the
fewest	 words?	 I	 believe	 it	 is	 the	 atomic	 hypothesis	 (or	 the	 atomic
fact,	 or	 whatever	 you	 wish	 to	 call	 it)	 that	 all	 things	 are	 made	 of
atoms–little	 particles	 that	 move	 around	 in	 perpetual	 motion,
attracting	 each	 other	 when	 they	 are	 a	 little	 distance	 apart,	 but
repelling	 upon	 being	 squeezed	 into	 one	 another.	 In	 that	 one
sentence,	you	will	see,	there	is	an	enormous	amount	of	information
about	the	world,	if	just	a	little	imagination	and	thinking	are	applied.
(Richard	Feynman,	Six	Easy	Pieces,	p.	4)

The	child-like	simplicity	of	the	question	‘What	if	I	divide	this	thing	in
half…	 and	 in	 half	 again.…	 and	 again…?’	 belies	 its	 sophistication.
The	 answer	 to	 this	 question	 is	 not	 fully	 known,	 and	 it	 leads	 us
downwards	 into	 the	world	 of	 atoms:	 a	world	 in	which	 tiny	particles
dance	around	according	to	the	crazy	rules	of	quantum	physics.	We
do	not	need	to	delve	into	those	rules	here,	instead	we’d	like	to	get	a
rough-and-ready	appreciation	of	some	basic	properties	of	everyday
‘stuff’.	Let’s	start	out	with	a	summary	of	what	we	know.

We	know	that	all	ordinary	matter	 is	made	up	of	atoms,	 from	the
Sun	 to	a	 lump	of	 rock	 to	 the	air	we	breathe,	and	 that	 there	are	98
different	 types	 of	 atom	 that	 occur	 naturally	 on	 the	 Earth	 (humans
have	managed	 to	 build	 a	 further	 20	 different	 types).	 These	 are	 all
listed	 in	 the	 periodic	 table,	 shown	 in	 Figure	 2.11.	 The	 most
commonly	occurring	type	of	atom	in	the	Universe	is	hydrogen;	over
90%	 of	 the	 atoms	 in	 the	 Sun	 are	 hydrogen	 (the	 remainder	 being
almost	 entirely	 helium).	 On	 Earth,	 the	 atomic	 composition	 is	more
diverse.	 The	 oceans	 are	 mainly	 hydrogen	 and	 oxygen,	 while	 the
most	abundant	atoms	in	the	Earth’s	crust	are	oxygen	and	silicon.	In
the	 atmosphere	 they	 are	 nitrogen	 and	 oxygen,	 while	 the	 core	 is
predominantly	made	of	iron.

We	know	that	each	atom	is	made	up	of	a	central	nucleus,	which
contains	almost	all	of	the	mass	of	the	atom,	and	surrounding	it	 is	a
‘swarm’	 of	 tiny	 electrons	 (tiny	 in	 comparison	 to	 the	 nucleus).	 The
nucleus	is	typically	just	a	few	femtometres	across,	and	the	electrons
dance	around	it:	infinitesimal	specks	at	distances	of	a	few	tenths	of	a



nanometre	across.	To	give	an	idea	of	what	this	means,	if	we	were	to
scale	 up	 an	 atom	 so	 that	 the	 nucleus	 was	 the	 size	 of	 a	 pea,	 the
electrons	 would	 be	 like	 tiny	 grains	 of	 sand	 hopping	 around	 a
kilometre	 away.	 In	 other	 words,	 an	 atom	 is	 almost	 entirely	 empty
space.	In	Box	4	(pp.	47–9)	we	show	how	you	can	make	an	estimate
of	the	size	of	an	atom	yourself.

But	 these	tiny,	point-like	electrons,	dancing	at	great	distances	 in
relation	 to	 the	 nucleus,	 are	 anything	 but	 ephemeral.	 For	 it	 is	 their
dancing	 motion,	 described	 by	 the	 rules	 of	 quantum	 theory,	 that
determines	the	way	that	collections	of	atoms	communicate	with	each
other;	in	other	words,	the	electrons	are	what	fixes	the	chemistry.

As	 far	 as	 the	 chemistry	 is	 concerned,	 the	 nucleus	 is	 an	 inert
object	and	acts	only	as	a	heavy	source	of	positive	electric	charge,
which	is	responsible	for	holding	the	negatively	charged	electrons	in
a	kind	of	orbit	around	 it.	 In	everyday	 life,	 the	electrons	do	 the	hard
work	of	negotiating	how	the	atoms	and	molecules	behave,	while	the
nuclei	sit	inert	at	the	heart	of	atoms,	shielded	from	the	maelstrom	of
electron	activity.



Figure	2.11	The	periodic	table	of	the	elements.



The	 nuclei	 are	 far	 from	 boring,	 though.	 Breaking	 apart	 heavy
nuclei	 (fission)	 or	 fusing	 light	 nuclei	 together	 can	 be	 used	 to
generate	 vast	 amounts	 of	 energy.	 Fission	 is	 what	 underpins	 the
reactors	 that	 are	 used	 throughout	 the	 world	 today,	 and	 fusion
reactors	 promise	 to	 deliver	 a	 clean	and	 virtually	 limitless	 supply	 of
energy.	 Looking	 inside	 nuclei	 is	 also	 mandated	 by	 our	 natural
human	curiosity–we	want	to	know	what	they	are	made	of.	So	far,	we
know	that	nuclei	are	made	of	protons	and	neutrons	and	that	they,	in
turn,	are	built	 from	quarks	and	gluons.	The	story	seems	 to	stop	at
quarks,	 gluons	 and	 electrons	 because	 the	 Standard	 Model	 of
particle	 physics	 describes	 these	 objects	 without	 any	 need	 for
substructure.	 In	 other	 words,	 it	 might	 not	 make	 any	 sense	 to	 ask
‘What	happens	if	I	chop	an	electron	in	half?’	or	‘What	is	an	electron
made	from?’	The	fact	 that	 the	 ‘What	happens	 if	 I	chop	this	 thing	 in
half’	sequence	may	eventually	come	to	an	end	is	something	that	 is
reasonable	 in	quantum	physics,	not	 least	because	 the	more	we	 try
to	pin	down	 the	 location	of	 very	 tiny	objects	 the	more	elusive	 they
become.	So	while	quantum	physics	does	not	exclude	the	possibility
that	particles	like	electrons	and	quarks	have	substructures,	nor	does
it	demand	it.

Figure	2.12	A	ring	of	48	iron	atoms	adsorbed	onto	a	copper	surface.	The

pictures	are	taken	with	a	scanning	tunneling	microscope	and	the	circular

waves	trapped	inside	the	‘corral’	correspond	to	waves	of	electron	density.

It	shows	how	electrons	behave	like	waves,	which	is	a	feature	of	quantum

theory.

Nuclei	 are	 also	 interesting	 because	 they	 can	 perform	 acts	 of



alchemy.	 By	 that	 we	 mean	 that	 a	 nucleus	 of	 one	 type	 can
spontaneously	 change	 into	 a	 nucleus	 of	 a	 different	 type.	 For
example,	 in	 nuclear	 alpha	 decay	 a	 nucleus	 can	 eject	 an	 ‘alpha
particle’,	which	is	in	fact	the	nucleus	of	a	helium	atom.	Certain	nuclei
have	 a	 propensity	 to	 eject	 alpha	 particles:	 uranium	 and	 thorium
produce	 most	 of	 the	 helium	 on	 Earth	 this	 way.	 The	 alpha	 emitter
plutonium-238	 is	used	to	power	heart	pacemakers,	and	americium-
241	 (which	 is	made	 inside	 nuclear	 reactors	 and	 is	 a	 by-product	 of
the	Manhattan	project)	 is	used	 in	smoke	detectors.	The	americium
produces	 alpha	 particles	 that	 collide	 with	 air	 molecules,	 knocking
electrons	off	them	to	produce	an	electric	current.	The	current	falls	if
smoke	 particles	 enter	 the	 detector	 and	 prevent	 the	 alpha	 particles
from	ionizing	the	air,	which	in	turn	triggers	the	alarm.	Alpha	emission
was	a	 total	mystery	prior	 to	 the	arrival	of	quantum	theory–not	 least
because	it	is	the	subatomic	equivalent	of	throwing	a	tennis	ball	at	a
brick	 wall	 and	 occasionally	 seeing	 it	 pass	 through.	 By	 which	 we
mean	 that	 the	 alpha	 particle	 manages	 to	 escape	 from	 inside	 the
nucleus	even	though	it	ought	to	be	trapped	within	it,	just	as	a	tennis
ball	ought	to	be	trapped	on	one	side	of	a	brick	wall.	This	weird	effect
is	called	quantum	tunnelling.

Also	extremely	puzzling	is	the	simple	fact	that	nobody	can	predict
exactly	 when	 a	 particular	 atom	 will	 undergo	 a	 radioactive	 decay,
although	we	can	say	how	long	it	will	take	on	average.	For	example,
we	might	say	that	there	is	a	50%	chance	of	an	atom	transmuting	in	a
certain	interval	of	time,	called	the	half-life.	This	is	illustrated	in	Figure
2.13,	 which	 shows	 how	 the	 number	 of	 radioactive	 caesium-137
atoms	might	change	over	time.	Caesium-137	decays	to	barium-137
when	 one	 of	 its	 neutrons	 turns	 into	 a	 proton,	 with	 the	 concurrent
emission	of	 an	electron	and	an	electron-antineutrino.1	 This	 type	of
decay	is	known	as	beta	decay	and	it	is	a	consequence	of	the	weak
nuclear	force.	Figure	2.13	shows	that,	of	a	hypothetical	initial	sample
of	 1000	 atoms,	 474	 remained	 after	 30	 years;	 60	 years	 later	 the
number	roughly	halved	again,	to	250	atoms,	and	after	90	years	the
number	of	atoms	left	was	108.	This	atom	therefore	has	a	half-life	of
30	 years.	 The	 curve	 shows	 the	 expected	 number	 of	 atoms
remaining,	based	upon	 the	 idealized	case	 in	which	exactly	half	 the
atoms	decay	in	30	years	(it	is,	in	other	words,	an	exponential	decay).



Figure	2.13	The	number	of	atoms	in	a	hypothetical	sample	of	atoms

whose	half-life	is	30	years.	The	dots	are	for	a	specific	sample	while	the

curve	is	what	you	would	get	if	you	averaged	over	many	samples.

The	 randomness	 of	 radioactive	 decay	 is	 curious.	 For	 example,
we	might	suppose	that	a	freshly	created	nucleus	would	tend	to	last
longer	 than	 an	 older	 one.	 But	 this	 is	 not	 the	 case–the	 decay	 of	 a
nucleus	 is	 totally	 random	and	without	any	dependence	on	how	 the
nucleus	 was	 created	 or	 its	 history.	 We	 now	 understand	 that	 this
randomness	is	a	fundamental	feature	of	the	Universe:	it	is	a	defining
characteristic	of	quantum	physics.

Like	alpha	decay,	beta	decay	is	also	exploited	in	everyday	life,	for
instance	 in	PET	 scanners,	where	 anti-matter	 is	 exploited	 to	 image
the	 human	 body.	 Fluorine-18	 is	 unstable	 to	 beta	 decay,	 which
means	that	it	is	liable	to	convert	into	oxygen-18	with	a	half-life	of	just
under	 2	 hours.	 In	 this	 case,	 the	 decay	 process	 involves	 the
conversion	 of	 a	 proton	 inside	 the	 fluorine	 nucleus	 into	 a	 neutron,
with	 the	 concurrent	 emission	 of	 an	 antielectron	 (also	 known	 as	 a
positron)	 and	 an	 electron	 neutrino.	 Positrons	 are	 identical	 to
electrons,	 with	 the	 sole	 exception	 that	 they	 have	 positive	 electric
charge.	Crucially	for	PET	scanning,	when	the	positron	bumps	into	an



electron	 the	 two	 annihilate	 each	 other	 with	 the	 production	 of	 two
photons	(particles	of	light).	The	photons	have	a	lot	more	momentum
than	the	original	electron	and	positron,	and	so	they	travel	away	from
each	other	 in	opposite	directions.	By	surrounding	the	patient	with	a
photon	 detector,	 it	 is	 possible	 to	 detect	 the	 individual	 photons	 and
ascertain	whereabouts	in	the	body	they	were	produced.	Fluorine-18
is	 particularly	 useful	 for	 mapping	 out	 brain	 function	 or	 locating
glucose-hungry	 cancer	 cells,	 because	 it	 can	 be	 incorporated	 into
glucose	molecules.	Other	positron	emitters	can	be	incorporated	into
a	 variety	 of	 molecules	 to	 trace	 out	 different	 biologically	 active
regions	of	the	body.	The	way	these	radioactive	substances,	such	as
fluorine-18,	 are	 produced	 is	 an	 interesting	 example	 of	 how	 blue-
skies	research	often	becomes	relevant	to	everyday	life.	Specifically,
fluorine-18	 is	 manufactured	 using	 room-sized	 particle	 physics
accelerators,	by	bombarding	oxygen-18	with	protons	that	have	been
accelerated	 through	a	voltage	of	a	 few	million	volts.	PET	scanners
are	also	a	good	illustration	of	Einstein’s	E	=	mc2	 in	action,	because
the	mass	associated	with	the	initial	electron	and	positron	is	entirely
converted	 into	 the	 energy	 of	 the	 photons:	 each	 and	 every	 photon
that	 is	 detected	 has	 energy	 equal	 to	 the	 mass	 of	 an	 electron
multiplied	 by	 the	 speed	 of	 light	 squared	 (511	 keV).	 This	 energy	 is
large	enough	to	guarantee	that	the	two	photons	will	travel	away	from
each	other	 in	opposite	directions.	This,	combined	with	 the	 fact	 that
all	of	the	PET	photons	carry	the	same	energy,	helps	in	the	detection
process.	 PET	 scanners	 are	 beautiful	 examples	 of	 highly	 esoteric
fundamental	physics	in	everyday	life.

The	periodic	 table	orders	 the	atoms	according	 to	 the	number	of
protons	 in	 their	nucleus,	which	 is	equal	 to	 the	number	of	electrons
surrounding	it:	this	is	called	the	‘atomic	number’.	The	mass	of	each
atom	is	also	listed	in	the	table,	described	in	units	where	the	mass	of
a	 proton	 and	 a	 neutron	 are	 approximately	 equal	 to	 1.	 All	 of	which
means	we	can	usually	figure	out	how	many	neutrons	are	in	an	atom.
The	 number	 of	 neutrons,	 which	 should	 be	 an	 integer,	 should	 be
approximately	 equal	 to	 the	 atomic	 mass	 minus	 the	 number	 of
protons.	 Gold	 has	 an	 atomic	 mass	 of	 196.97	 and	 contains	 79
protons:	an	atom	of	gold	should	by	implication	contain	118	neutrons.
There	are	some	peculiarities	though.	Take	a	look	at	chlorine	(atomic



number	 17).	 It	 has	 an	 atomic	 mass	 of	 35.453,	 which	 is	 midway
between	35	and	36,	so	it	seems	that	chlorine	should	contain	around
18.5	neutrons,	which	does	not	make	sense	because	there	can	only
be	an	integer	number	of	neutrons.	The	reason	for	this	oddity	is	that
chlorine	 atoms	 come	 mostly	 in	 two	 types:	 one	 type	 contains	 18
neutrons	 and	 the	 other	 contains	 20	 neutrons.	 The	 lighter	 variation
accounts	 for	 76%	 of	 the	 mass	 in	 naturally	 occurring	 chlorine;	 the
heavier	 one	 accounts	 for	 the	 remaining	 24%.	 The	mass	 quoted	 in
the	periodic	table	is	the	average	of	these	two,	i.e.	76%	×	35	+	24%	×
37	=	35.5.

We	 have	 already	 been	 making	 reference	 to	 the	 atomic	 mass
number,	 for	 example	 americium-241	 is	 built	 from	 a	 total	 of	 241
protons	and	neutrons.	Various	types	of	the	same	atom	with	different
numbers	 of	 neutrons	 are	 called	 isotopes.	 We	 say	 that	 naturally
occurring	chlorine	 is	composed	mainly	 from	 two	 isotopes:	chlorine-
35	(often	written	35Cl)	and	chlorine-37	(37Cl).	As	far	as	the	chemistry
is	concerned,	isotopes	of	the	same	element	behave	identically,	since
the	chemistry	only	cares	about	the	electrons.	In	contrast,	the	nuclear
properties	of	different	isotopes	can	be	very	different:	fluorine-18	is	a
positron	 emitter,	 while	 fluorine-19	 nuclei	 are	 stable,	 and	 therefore
useless	in	PET	scanners.	The	periodic	table	is	of	primary	interest	to
chemists,	which	is	why	the	information	on	isotopes	is	not	explicit.

BOX	4.	HOW	BIG	IS	AN	ATOM?

We	 can	 estimate	 the	 size	 of	 an	 atom	 by	 carefully	 dropping	 a	 tiny
amount	 of	 oil	 onto	 the	 surface	 of	 some	water	 and	 then	measuring
how	much	 it	 spreads	 out.	 The	 oil	will	 spread	 out	 because	 there	 is
nothing	to	stop	it	from	spreading,	and	it	will	form	a	layer	a	few	atoms
thick.	 This	 idea	 is	 attributed	 to	 the	 prolific	 physicist	 Lord	 Rayleigh
who,	on	being	awarded	the	1902	Order	of	Merit	at	the	coronation	of
King	 Edward	 VII,	 said:	 ‘The	 only	 merit	 of	 which	 I	 personally	 am
conscious	was	that	of	having	pleased	myself	by	my	studies,	and	any
results	that	may	be	due	to	my	researches	were	owing	to	the	fact	that



it	 has	 been	 a	 pleasure	 for	 me	 to	 become	 a	 physicist.’	 Without
knowing	more	 about	 how	oil	 is	made	 from	atoms	we	do	 not	 know
how	many	atoms	 thick	 the	 layer	 is,	 but	we	 certainly	 know	 that	 the
layer	 cannot	 be	 smaller	 than	 one	 atom	 thick.	 This	 means	 that	 by
determining	 the	 thickness	 of	 the	 layer	 we	 can	 make	 a	 statement
about	the	largest	possible	size	of	an	atom.

So	 if	we	know	how	much	oil	we	placed	onto	 the	water	 then	we
are	 in	 business.	For	 example,	 a	 0.5	mm	diameter	 drop	of	 olive	 oil
spreads	out	over	the	water	to	a	diameter	of	25	cm.	You	can	try	this
experiment	at	home	and	should	measure	the	maximum	extent	of	the
oil	drop,	because	water-softening	agents	might	cause	 it	 to	contract
after	a	period	of	time	as	they	attack	the	oil	(so	it	would	be	better	to
use	distilled	water).	The	volume	of	olive	oil	is	equal	to	4πr2/3	where
the	radius	r	=	0.25	mm.	This	volume	is	also	equal	to	the	volume	of
the	disk	of	oil	on	the	water,	which	in	turn	is	equal	to	πR2d,	where	R	=
12.5	 cm	 and	 d	 is	 the	 thickness	 of	 the	 disk.	 Equating	 these	 two
volumes	allows	us	to	determine	the	thickness	of	the	oil	layer:	d	=	1.3
×	 10-9	 metres.	 So	 we	 know	 that	 an	 atom	 cannot	 be	 bigger	 than
about	1	nanometre	in	size.

We	can	be	a	 little	more	daring	than	this	and	make	a	stab	at	 the
size	of	an	atom	if	we	are	prepared	to	accept	 that	 the	 layer	of	oil	 is
one	molecule	 thick	and	 that	each	oil	molecule	 is	a	chain	of	carbon
and	 hydrogen	 atoms	 with	 one	 end	 attached	 to	 the	 water.	 These
chains	are	typically	around	10	atoms	long	(it	depends	on	the	type	of
oil).	With	this	extra	information,	we	can	estimate	that	the	size	of	one
atom	is	roughly	equal	to	0.1	nanometres.

Knowing	the	size	of	an	atom,	we	can	ask	how	many	are	in	a	glass	of
water.	 If	 we	 assume	 that	 the	 atoms	 in	 a	 drop	 of	 olive	 oil	 are
approximately	the	same	distance	apart	as	those	in	a	drop	of	water,
we	can	estimate	the	number	of	atoms	in	a	glass	full	of	water	simply
by	 dividing	 the	 volume	of	 the	 glass	 by	 the	 volume	of	 one	atom.	A
500	ml	glass	has	a	volume	of	half	a	litre,	which	we	can	divide	by	the
volume	of	one	atom	to	figure	out	how	many	atoms	are	in	the	water.
500	 ml	 is	 500	 cubic	 centimetres,	 and	 we	 shall	 assume	 that	 each
atom	occupies	a	volume	of	approximately	1	cubic	ångstrom	(i.e.	one
atom	 fits	 inside	 a	 cube	 of	 side	 1	 ångstrom),	 which	 is	 10-24	 cubic



centimetres.	Taking	the	ratio	informs	us	that	there	are	something	like
500	×	1024	=	5	×	1026	atoms	 in	a	half	 litre	glass	of	water.	We	can
now	use	this	information	to	figure	out	the	mass	of	a	water	molecule.
Our	glass	of	water	has	a	mass	of	500	grams	and	we	have	estimated
that	 it	 contains	 around	 5	 ×	 1026	 atoms,	 so	 we	 can	 conclude	 that
each	 atom	 weighs	 around	 10-27	 kilograms.	 All	 these	 numbers	 are
not	too	far	off	the	mark,	and	they	are	certainly	within	a	factor	of	10	of
the	 true	 values–which	 is	 a	 terrific	 achievement	 given	 how	 many
factors	of	10	are	involved.

There	is	a	second	way	that	we	can	estimate	the	size	of	an	atom.
We	 can	 use	 a	 more	 theoretical	 approach	 to	 figure	 out	 what	 we
expect	 the	answer	 to	be.	 Let’s	 focus	on	 the	 simplest	 atom:	 that	 of
hydrogen,	with	 its	one	proton	and	one	electron.	The	proton	 is	very
much	heavier	 than	the	electron	and	can	be	thought	of	as	providing
an	 anchor	 about	 which	 the	 tethered	 electron	 dances.	We	 want	 to
know	how	far	 the	electron	 is	 from	the	proton	on	average.	The	next
paragraph	is	a	little	more	mathematical	than	the	norm	for	this	book;
skip	it	if	you	need	to.

The	 distance	 that	 the	 electron	 is	 from	 the	 proton,	 d,	 can	 only
depend	 on	 the	 size	 of	 the	 electrical	 charge	 of	 the	 proton	 and
electron	(Q),	the	electron	mass	(m)	and	a	number	that	underpins	the
whole	 of	 the	 quantum	 world:	 the	 quantum	 of	 action	 (ħ).	 The
dependence	on	Q	and	m	 is	 fairly	obvious:	we	expect	 that	d	should
reduce	as	Q	increases	(the	electron	would	be	more	tightly	bound	if	it
had	more	electric	charge)	or	as	m	increases	(the	electron	would	be
less	inclined	to	fly	away	if	it	is	heavy).	The	dependence	on	ħ	is	less
obvious–but	this	is	the	one	key	parameter	in	quantum	theory,	and	an
electron	 dancing	 around	a	 proton	 certainly	 is	 sensitive	 to	 quantum
effects,	so	we	should	contemplate	the	fact	that	d	might	depend	upon
it.	 This	 is	 not	 the	place	 for	 us	 to	delve	 into	 the	details	 of	 quantum
mechanics;	suffice	to	say	that	the	quantum	of	action	is	what	controls
the	wavelength	of	those	electron	waves	in	Figure	2.12.	If	we	assume
that	 these	 are	 the	 only	 quantities	 that	d	 depends	 on,	 then	we	 can
say	 that	 d	 must	 be	 proportional	 to	 ħ2/(mQ2).	 We	 can	 be	 this
confident	because	there	is	no	other	way	to	combine	these	quantities
to	 give	 a	 quantity	 that	 can	 be	measured	 in	metres.	 The	 charge	Q
can	be	determined	by	 ingeniously	exploiting	Coulomb’s	Law,	which



says	that	the	force	between	two	electric	charges	of	size	Q	separated
by	a	distance	R	is	equal	to	Q2/R2.	The	result	is	that	Q	=	4.8	×	10-10
g1/2	cm3/2/s.	The	mass	of	an	electron	is	m	=	9.11	×	10-28	g	and	ħ	=
1.1	 ×	 10-27	 g	 cm2/s.	 Putting	 these	 numbers	 in	 gives	 d	 =	 0.6
ångstroms.	We	cannot	claim	an	accuracy	to	better	than	a	factor	of	a
few	 using	 this	method–but	 it	 should	 give	 us	 a	 rough	 answer.	 This
way	 of	 figuring	 things	 out	 by	 appealing	 to	 the	 units	 carried	 by	 the
salient	quantities	in	a	problem	is	used	a	lot	by	physicists,	because	it
provides	 a	 quick	way	 to	 estimate	 things	 that	might	 be	much	more
difficult	to	compute	with	precision.	There	is,	of	course,	a	proper	(and
much	 lengthier)	way	to	do	 this	calculation.	As	every	undergraduate
physics	student	knows,	it	involves	solving	the	Schrödinger	equation.

The	 number	 we	 just	 obtained	 is	 a	 factor	 of	 6	 larger	 than	 the
number	obtained	by	dropping	oil	on	water.	This	 really	 is	very	good
agreement.	So	many	powers	of	10	are	 involved	in	the	numbers	we
are	working	with	that	it	would	be	very	easy	to	get	total	disagreement
if	we	did	not	understand	 things	correctly.	With	no	prior	knowledge,
except	that	provided	directly	by	our	senses,	atoms	could	conceivably
be	 any	 size	 at	 all	 smaller	 than	 something	 like	 a	 hundredth	 of	 a
millimetre.	That	is	a	range	spanning	an	infinite	number	of	powers	of
10,	 so	 the	 fact	 that	 the	 theoretical	 estimate	 and	 the	 oil-drop
measurement	give	answers	 that	agree	 to	better	 than	one	power	of
10	is	very	impressive.



3.	WEIGHING	THE	EARTH

Our	colleague	Mike	Seymour	made	an	interesting	observation	while	on	holiday
at	Ogmore-by-Sea.	Standing	on	 the	mudflats	by	 the	water’s	edge,	enjoying	 the
cool	 of	 the	 salty	 waves	 over	 his	 mildly	 sunburnt	 feet,	 Mike	 noticed	 a	 buoy
floating	 in	 the	 Bristol	 Channel	 that	 appeared	 to	 be	 perched	 precisely	 on	 the
horizon:	an	observation	that	is	in	itself	enough	to	make	a	rough	estimate	of	the
size	of	the	Earth.	Being	a	physicist	at	rest,1	Mike	decided	to	gather	the	necessary
information.	 Releasing	 his	 heels	 with	 a	 squelch	 he	 turned	 and	 walked	 with
careful	sharp-shell	cadence	to	a	shop,	and	bought	a	map.	This	informed	him	that
the	 buoy,	 known	 as	 the	 Fairy	 Buoy,	 was	 approximately	 4	 km	 away	 from	 his
vantage	 point	 on	 the	 beach,	which	 is	marked	 by	 a	 red	 cross	 in	 Figure	 3.1.	 A
quick	 sketch	 on	 the	 back	 of	 a	 seaside	 serviette	 (	 Figure	 3.2)	 allowed	 him	 to
deduce	 that	 the	 Earth	 has	 a	 radius	 of	 roughly	 5000	 km.	 The	 actual	 value	 is
around	6400	km.	 It	may	 impress	you	 that	Mike	made	a	 reasonable	estimate	of
the	 size	 of	 our	 planet	 simply	 by	 observing	 the	 region	 around	Ogmore-by-Sea.
Equally,	you	might	be	unimpressed	that	his	answer	is	20%	out.



Figure	3.1	Mike	stands	on	The	Flats	at	Ogmore-by-Sea,	at	the	position

marked	by	a	red	cross.	He	estimates	the	distance	to	the	horizon	by	noticing

that	the	Fairy	Buoy	is	approximately	4	km	away.



Figure	3.2	Mike’s	eyes	are	h	=	1.6	m	above	the	surface	of	the	Earth	at	point	A.
He	estimates	that	the	horizon	vanishes	at	point	B	by	observing	the	buoy

perched	perfectly	in	full	view	on	the	horizon.	The	map	informs	him	that	this	is

a	distance	D	=	4	km	from	the	beach.	Using	Pythagoras’s	theorem,	the	radius
of	the	Earth	R	is	given	by	D2/(2h),	where	D	is	the	distance	between	Mike	and

the	buoy.	Putting	the	numbers	in	gives	R	=	5000	km.

The	calculation	works	on	 the	assumption	 that	 the	distance	 to	 the	buoy	 is	 in
fact	the	distance	to	the	horizon.	The	quality	of	Mike’s	eyesight	governs	how	well
he	is	able	to	determine	whether	or	not	the	buoy	is	coincident	with	the	horizon.	A
person	with	average	eyesight	can	just	about	resolve	a	small	coin	at	a	distance	of
40	metres,	 corresponding	 to	 an	 angular	 resolution	 of	 about	 0.03	 degrees.	 This
means	that	Mike	could	perceive	the	buoy	as	being	coincident	with	the	horizon,
even	though	the	horizon	is	slightly	in	front	of	or	slightly	behind	it.	All	he	can	say
with	 certainty,	 therefore,	 is	 that	 the	 distance	 to	 the	 horizon	 lies	 somewhere
between	 two	 extremes,	 defined	by	 the	 resolution	of	 his	 eyes,	which	he	 should



quote	 as	 an	 uncertainty	 on	 the	measurement.	A	 little	 calculation2	 reveals	 that,
given	 the	 limits	 of	 his	 eyesight,	Mike	 really	 ought	 to	 have	 concluded	 that	 the
radius	of	the	Earth	could	quite	easily	be	anywhere	between	2000	km	and	36,000
km.	The	fact	that	his	serviette	calculation	got	so	close	to	the	true	value	is	largely
a	coincidence.

Estimating	the	uncertainty	on	a	result	is	often	as	important	as	the	result	itself.
It	is	only	when	we	are	aware	of	our	ignorance	that	we	can	judge	best	how	to	use
knowledge.	 In	 engineering	 or	 medical	 science,	 a	 deep	 understanding	 of
uncertainty	can	be	a	matter	of	life	and	death.	In	politics,	over-confidence	is	often
the	 norm;	 uncertainty	 is	 seen	 as	 weakness	 when	 really	 it	 is	 a	 vital	 part	 of
decision	 making.	 In	 this	 respect,	 science	 delivers	 an	 important	 lesson	 in
humility.

In	Mike’s	 case,	 his	measurement,	while	 inaccurate,	 does	 still	 give	 us	 some
idea	about	the	size	of	the	Earth.	To	achieve	a	better	result,	Mike	would	need	to
improve	 on	 the	 limiting	 resolution	 of	 his	 eyes,	which	 can	 be	 done	 by	 using	 a
camera	with	a	long	lens.	Fortunately,	Mike’s	dad,	Bob,	is	a	keen	photographer,
and	 lives	 in	 Ogmore-by-Sea.	We	 couldn’t	make	 this	 up.	We	 asked	 Bob	 if	 he
might	go	down	to	the	beach	and	take	some	photographs	of	the	Fairy	Buoy	for	us.
He	kindly	obliged:	a	selection	of	his	photos	are	shown	in	Figure	3.3.

Figure	3.3	Bob	Seymour’s	photographs	of	the	Fairy	Buoy.	They	are	all	taken

from	the	same	place	on	the	beach	and	with	the	same	tripod	height.	The	waves

are	causing	the	buoy	to	bob	up	and	down.

Bob’s	photos	were	taken	when	the	sea	was	quite	choppy–which	is	perhaps	a
bonus,	as	we	do	not	need	to	worry	about	the	bending	of	light	due	to	atmospheric
effects,	something	which	is	more	prone	to	happening	on	calm	days:	we	can	see
that	 atmospheric	 effects	 are	 not	 an	 issue	 here	 because	 the	 images	 are	 pretty



sharp.	 Bob	 adjusted	 the	 height	 of	 his	 camera	 such	 that	 the	 pictures	 show	 the
buoy	 perched	 directly	 on	 the	 horizon.	 (Lowering	 the	 camera	 would	 push	 the
buoy	 behind	 the	 horizon;	 raising	 it	 brings	 it	 in	 front	 of	 the	 horizon.)	 The
photographs	 in	 the	 figure	 were	 taken	 at	 a	 height	 of	 1.3	 metres.	 The	 camera
position	was	determined	using	GPS	and	the	position	of	the	Fairy	Buoy	was	taken
from	the	Trinity	House3	official	records.	The	distance	between	buoy	and	camera
was	4.15	km.	These	more	 refined	numbers	give	 a	 radius	of	 the	Earth	 equal	 to
6600	 km.	Using	 a	 camera	 has	 significantly	 reduced	 the	 uncertainty	 caused	 by
limited	 resolution;	 the	 chief	 source	 of	 uncertainty	 that	 remains	 is	 now	 the
difficulty	in	ascertaining	the	precise	height	of	the	camera	above	the	average	level
of	 the	 waves.	 A	 10	 cm	 change	 in	 height	 leads	 to	 a	 500	 km	 change	 in	 the
calculated	radius	of	the	Earth,	which	we	might	quote	as	a	conservative	estimate
of	the	uncertainty	on	Bob’s	measurement.

There	are,	of	course,	far	better	ways	of	measuring	the	radius	of	the	Earth	than
this–but	 that	 isn’t	 the	 point.	This	 is	 a	 good	 example	 of	 how	 simple,	 curiosity-
driven	 observations,	 together	 with	 a	 little	 bit	 of	 careful	 thought,	 can	 lead	 to
interesting	 conclusions.	 In	what	we	 suspect	 is	 a	world	 first,	Mike	 and	 his	 dad
have	 measured	 the	 size	 of	 our	 planet	 from	 Ogmore-by-Sea.	 We	 have	 also
learned	a	valuable	lesson	in	quantifying	uncertainty:	it	is	easy	to	be	misled	into
drawing	the	wrong	conclusion	unless	we	understand	the	degree	of	our	ignorance.

In	his	measurement	of	the	Earth,	Mike	followed	in	the	footsteps	of	the	greats
(although	if	he’d	actually	stood	on	the	shoulders	of	giants	he	wouldn’t	have	been
able	 to	 make	 his	 measurement).	 One	 of	 the	 earliest	 documented	 attempts	 to
estimate	the	size	of	the	Earth	was	made	by	Aristotle	in	350	BCE.	Aristotle	noted
in	 his	 book	 On	 the	 Heavens	 that	 ‘there	 are	 stars	 seen	 in	 Egypt	 and	 in	 the
neighbourhood	of	Cyprus	which	are	not	seen	in	the	northerly	regions,’	and	that
the	sphere	of	the	Earth	is	therefore	‘of	no	great	size,	for	otherwise	the	effect	of
so	slight	a	change	of	place	would	not	be	quickly	apparent’.	Using	a	very	simple
observation,	Aristotle	ruled	out	the	possibility	that	 the	Earth	has	a	radius	much
bigger	 than	 the	 distance	 between	Egypt	 and	 the	 northern	 extent	 of	 the	 ancient
world–that’s	 to	say,	a	 few	 thousand	kilometres.	And,	unsurprisingly	 for	one	of
the	most	influential	scientists	ever,	he	was	right.	This	is	a	terrific	illustration	of
an	 ‘order-of-magnitude’	 estimate.	 Order-of-magnitude	 estimates	 are	 quick
calculations	that	are	not	supposed	to	be	very	accurate,	and	they	are	important	in
science	because	they	can	provide	a	good	deal	of	insight	with	very	little	work.

The	title	of	this	chapter	is	‘Weighing	the	Earth’,	and	that	seems	like	a	much
taller	order	than	estimating	its	radius.	It	is,	but	we	can	already	make	an	order-of-



magnitude	estimate	using	the	Seymour	family	measurements.	Let’s	assume	that
the	Earth	is	a	perfect	sphere.	Its	volume	is	4/3πR3,	which	is	1.2	×	1021	m3.	In	the
absence	 of	 any	 other	 information,	 it	 isn’t	 too	 crazy	 to	 suppose	 that	 the	whole
Earth	 might	 be	 a	 uniform	 sphere	 made	 of	 granite–a	 dense	 rock	 commonly
occurring	in	the	Earth’s	crust–or	something	whose	average	density	is	the	same	as
that	of	granite.	The	density	of	granite	is	2.8	grams/cubic	centimetre,	which	gives
us	a	very	rough	estimate	for	the	mass	of	the	Earth	as	3.4	×	1024	kg.	We	have,	of
course,	 absolutely	 no	 way	 of	 knowing	 whether	 this	 is	 anywhere	 near	 right
without	 finding	 some	 other	 way	 of	 weighing	 the	 Earth–and	 it	 is	 not	 at	 all
obvious	how	this	might	be	done.	Let’s	work	out	how	to	do	it.

We’ll	start	by	examining	the	motions	of	the	planets	across	the	night	sky.	At
first	glance	this	might	seem	to	be	a	strange	point	of	departure,	but	it	will	serve	to
illustrate	an	important	point.	Very	often	in	science,	work	in	one	area	can	impact
on	 superficially	 unrelated	 areas.	 This	 is	 one	 of	 many	 reasons	 why	 scientists
should	 be	 allowed	 and	 encouraged	 to	 roam	 around	 researching	 anything	 that
appears	 interesting.	Nature	 is	 tremendously	 interconnected.	 Some	 time	 around
1510,	 the	 Polish	 astronomer	 Nicolaus	 Copernicus	 wrote	 a	 manuscript,	 the
Commentariolus,	 in	 which	 he	 expressed	 his	 dissatisfaction	 with	 the	 classical
Earth-centred	cosmology	of	Ptolemy,	formulated	some	1400	years	previously.	‘I
often	consider,’	Copernicus	pondered,	‘whether	there	could	perhaps	be	found	a
more	reasonable	arrangement	of	circles,	from	which	every	apparent	irregularity
would	be	derived	while	everything	in	itself	would	move	uniformly,	as	required
by	 the	 rule	 of	 perfect	 motion.’	 The	 irregularities	 he	 was	 referring	 to	 are	 the
occasional	loops	the	planets	perform,	as	viewed	from	Earth,	as	they	make	their
way	across	the	starry	background	over	the	course	of	weeks	and	months.	Back	in
the	second	century	CE,	Ptolemy	had	devised	a	complicated	system	to	predict	the
motion	of	the	planets,	which	worked	very	well	but	was,	at	least	to	Copernicus’s
mind,	 ugly.	 In	 the	 Commentariolus,	 Copernicus	 asserts	 that	 the	 Moon	 goes
around	the	Earth,	the	Earth	and	planets	go	around	the	Sun,	that	the	daily	motion
of	 the	Sun	and	stars	 is	due	 to	 the	rotation	of	 the	Earth	on	its	axis,	and	that	 the
distance	from	the	Earth	to	the	Sun	is	far	smaller	than	the	distances	to	the	stars.
He	also	suggests	that	the	planetary	loops	we	observe	are	a	result	of	the	Earth’s
motion	relative	to	the	planets.	All	of	these	statements	are	correct.

Copernicus	 published	 his	 complete	 works	 in	 1543	 in	 the	 six-volume	 De
Revolutionibus	orbium	coelestium	(On	the	Revolutions	of	the	Heavenly	Spheres),
which	 is	 rightly	 regarded	 as	 one	 of	 the	 foundational	 early	 works	 in	 modern
science.	He	showed	that	the	complex	motions	of	the	planets	can	be	understood	if



it	is	assumed	that	they	all,	Earth	included,	move	in	orbits	around	the	Sun,	each
taking	a	different	length	of	time	to	complete	one	circuit.	Copernicus	thought	the
orbits	 were	 circles	 but,	 as	 we	 now	 know,	 this	 is	 only	 an	 approximation.	 The
planets	follow	slightly	elliptical	trajectories.	The	Earth	takes	1	year	to	circle	the
Sun,	Mercury	 takes	88	days,	while	Saturn	makes	 the	 journey	 in	29	years.	The
Copernican	Sun-centred	model	got	a	rough	ride	for	many	years,	partly	because
the	 idea	 was	 seen	 to	 run	 counter	 to	 scripture	 by	 demoting	 the	 Earth	 from	 its
previously	 imagined	position	at	 the	centre	of	 the	Universe,	and	also	because	 it
doesn’t	feel	as	if	the	Earth	is	hurtling	through	space.	This	isn’t	a	silly	objection,
and	the	deeper	ramifications	of	the	fact	that	we	can’t	tell	whether	or	not	we	are
moving	 were	 only	 truly	 appreciated	 by	 Einstein	 in	 his	 special	 and	 general
theories	of	relativity,	published	in	1905	and	1915.	We	will	get	to	Einstein	later.

If	we	accept	Copernicus’s	wisdom,	and	arrange	 the	planets	 in	near	 circular
orbits	around	the	Sun,	we	can	work	out	their	distances	to	the	Sun,	in	terms	of	the
distance	 from	 the	Earth	 to	 the	Sun.	For	 the	 inner	planets,	Mercury	and	Venus,
the	orbital	 radius	 can	be	calculated	 from	a	measurement	of	 the	 largest	 angular
separation	between	the	planet	and	the	Sun.	(You	can	see	this	in	Figure	3.4.)	We
defer	 to	 the	next	chapter	 the	task	of	measuring	the	distance	to	Neptune,	one	of
the	outer	planets,	which	we	do	explicitly	using	a	digital	camera,	a	good	 tripod
and	some	photo-editing	software.	The	orbital	periods	of	 the	planets–the	 time	 it
takes	 them	 to	orbit	 once	 around	 the	Sun–are	 also	 easily	 determined.	 In	Figure
3.5	we	show	how	to	determine	the	length	of	time	it	takes	for	Jupiter	to	orbit	the
Sun	by	measuring	 the	 time	between	successive	occasions	when	 the	Sun,	Earth
and	the	planet	line	up	in	the	sky.



Figure	3.4	We	can	determine	the	distance	from	Earth	to	Venus	or	Mercury	by

measuring	the	angle,	θ,	which	is	the	largest	angular	distance	on	the	sky

between	the	planet	and	the	Sun.	The	distance	d	is	then	obtained	by	basic
trigonometry,	i.e.	d	=	D	sinθ.	These	methods	allow	all	distances	to	be
computed	relative	to	the	distance	between	the	Earth	and	the	Sun.	The

distance	between	Earth	and	Venus	can	also	be	measured	by	timing	how	long

it	takes	for	a	radar	signal	to	travel	to	Venus	and	back.	Once	we	know	that

distance,	we	can	determine	the	orbital	distances	of	all	of	the	planets	in	the

solar	system	in	metres.	This	radar	measurement	was	first	achieved	in	1961,

using	the	twin	26-metre-diameter	radio	telescopes	at	the	Goldstone

observatory	in	the	Mojave	Desert,	California.	The	result	gave	a	value	for	the

mean	Earth–Sun	distance	of	149,599,000	km.	It’s	quite	hard	to	base	a	high-

precision	measurement	system	on	something	defined	simply	as	‘the	mean

distance	from	the	Earth	to	the	Sun’.	So,	in	August	2012,	the	International

Astronomical	Union	defined	the	Astronomical	Unit	(AU)	to	be	precisely

149,597,870,700	metres.	This	means	that	the	mean	distance	from	the	Earth	to

the	Sun	is	not	precisely	1	AU	any	more,	but	it	never	was	precisely	anything



anyway.	The	precision	of	modern	measurement	has	meant	that	astronomers

have	outgrown	the	old,	intuitive	definition.

Figure	3.5	Measuring	the	time	it	takes	for	an	outer	planet	to	orbit	the	Sun.	S	is

the	time	between	successive	occasions	when	the	Sun,	Earth	and	the	planet

all	line	up	(astronomers	say	that	the	planets	are	‘in	opposition’	when	they	line

up	like	this).	Simple	geometry	gives	(S-E)/E	=	S/P,	where	P	is	the	time	it	takes

for	the	planet	to	orbit	the	Sun	and	E	is	the	time	it	takes	the	Earth	to	orbit	the

Sun,	i.e.	1	year.	This	implies	that	1/E–1/S	=	1/P,	a	formula	Copernicus	used
five	centuries	ago	in	De	Revolutionibus.



Just	 over	 half	 a	 century	 after	 Copernicus,	 the	 German	 astronomer	 Johannes
Kepler	spotted	that	there	is	a	simple	relationship	between	the	size	of	a	planet’s
orbit	and	the	time	taken	to	travel	once	around	the	Sun.	Using	data	collected	by
Tycho	Brahe,	a	Danish	nobleman	and	fellow	astronomer,	Kepler	noticed	that	the
square	of	 the	orbital	 period	 (or	T2	 for	 short)	 is	proportional	 to	 the	 cube	of	 the
radius	of	the	orbit	(R3–more	precisely,	it	is	the	cube	of	the	semi-major	axis	of	an
elliptical	orbit).	This	means	that	 the	ratio	of	T2/R3	should	be	the	same	for	each
planet	and,	as	the	data	in	Table	3.1	illustrate,	Kepler	was	on	to	something.

In	1687,	the	first	edition	of	Isaac	Newton’s	Philosophiæ	Naturalis	Principia
Mathematica	 was	 published.	 In	 it,	 Newton	 demonstrated	 that	 the	 empirical
pattern	Kepler	had	detected	is	a	consequence	of	a	deeper	physical	law.	The	idea
that	 regularities	 and	 patterns	 in	 Nature	 are	 often	 the	 sign	 of	 an	 underlying
simplicity	 that	 can	be	 captured	by	mathematical	 equations	 is	 a	 familiar	 one	 to
scientists	 today–but	 in	 the	 late	 seventeenth	 century,	 Newton’s	 discovery	 was
revolutionary.

The	 mathematical,	 law-based	 approach	 that	 Newton	 introduced	 in	 his
Principia	 is	 the	foundation	for	virtually	all	of	modern	physics.	He	showed	that
Kepler’s	T2/R3	pattern	is	a	consequence	of	the	existence	of	a	Universal	Law	of
Gravitation,	which	states	that	all	massive	bodies	attract	each	other	with	a	force
that	is	proportional	to	the	product	of	their	masses,	and	inversely	proportional	to
the	square	of	the	distance	between	them.	For	a	planet	orbiting	the	Sun,	the	law
states	that	the	Sun	exerts	a	force	F	on	the	planet,	and	that	F	=	GMm/R2,	where	M



and	m	are	the	masses	of	the	Sun	and	the	planet	respectively,	and	R	is	the	distance
between	 their	 centres.	 The	 quantity	 G	 is	 now	 known	 as	 the	 Gravitational
Constant,	 and	 it	 is	 a	 number	 whose	 value	 describes	 the	 strength	 of	 the
gravitational	 force.	 Newton	 also	 introduced	 what	 is	 now	 referred	 to	 as	 his
Second	Law	of	Motion,	which	describes	how	an	object–such	as	a	planet–moves
when	a	force	acts	upon	it.	This	Second	Law	of	Motion	states	that	forces	induce
accelerations	according	to	the	equation	F	=	ma,	where	m,	in	our	case,	would	be
the	mass	of	the	planet	and	a	is	the	acceleration.	With	just	these	two	equations,	it
is	possible	to	understand	the	origin	of	the	elliptical	planetary	orbits	and	Kepler’s
T2/R3	pattern.	Box	5	shows	details	for	the	simplest	case	of	a	circular	orbit.

It	is	hard	to	overstate	the	radical	leap	forward	delivered	by	Newton,	and	we
could	spend	the	rest	of	this	book	exploring	the	consequences	of	his	laws.	But	in
this	chapter	we’re	focused	on	one	specific	goal.	We	want	to	weigh	the	Earth4–
and	 in	 this	 context,	Newton’s	 laws	offer	 something	extremely	 important.	They
relate	the	motion	of	something,	such	as	the	orbit	of	a	moon	around	a	planet	or	a
planet	around	the	Sun,	to	the	mass	of	the	thing	that	induces	that	motion,	through
the	Universal	Law	of	Gravitation.	 In	 the	 language	of	a	physicist,	 this	 is	highly
non-trivial.

Before	Newton,	there	was	no	known	connection	between	these	things.	All	of
Newton’s	laws	are	universal,	which	means	that	they	don’t	only	apply	to	moons
and	planets	and	stars.	They	are	supposed	to	apply	to	any	objects,	anywhere.	This
is	 also	 a	 highly	 non-trivial	 statement,	 because	 it	 means	 there	 is	 a	 common
framework	 that	 can	 describe	 the	motion	 of	 the	 planets	 in	 the	 heavens	 and	 the
motion	 of	 objects	 like	 cannonballs	 and	 swinging	 pendulums	 here	 on	 Earth.
Perhaps	you	can	see	where	we	are	heading.

Let’s	 consider	 a	 ball	 falling	 to	 the	 ground.	 How	 is	 this	 described	 using
Newton’s	laws?	The	force	acting	on	the	ball,	accelerating	it	towards	the	ground,
is	given	by	F	=	GMm/r2,	where	M	is	the	mass	of	the	Earth,	m	is	the	mass	of	the
ball,	and	r	 is	 the	distance	between	the	centre	of	the	Earth	and	the	centre	of	the
ball.	The	way	the	ball	responds	to	this	force	is	given	by	Newton’s	Second	Law
of	Motion,	F	=	ma.	A	very	simple	bit	of	algebra	gives	us	the	acceleration	of	the
ball	induced	by	the	gravitational	pull	of	the	Earth;	a	=	GM/r2.	Using	a	ruler	and
a	watch,	we	can	measure	 the	acceleration	of	a	ball	when	we	drop	 it	 (we’ll	get
close	 to	9.8	m/s2)	 and,	with	 r	=	6370	km,	we	can	calculate	 the	product	of	 the
mass	and	the	Gravitational	Constant:	GM	=	4.0	×	1014	m3/s2.



BOX	5.	KEPLER’S	LAW

Newton’s	 law	of	gravity,	 together	with	his	equation	F	=	ma,	explain
Kepler’s	law.	This	is	easy	to	understand	in	a	case	where	the	planet’s
orbit	is	a	perfect	circle	but,	with	a	little	more	maths,	it	also	works	for
elliptical	 orbits.	 Here	 we	 show	 how	 Newton’s	 law	 works	 out	 for	 a
circular	 orbit.	Since	F	 =	ma	 =	GMm/R2,	 it	 immediately	 follows	 that
the	 planet	 accelerates	 towards	 the	 Sun	 with	 an	 acceleration	 of
GM/R2.	 But	 for	 things	 that	 go	 in	 circles	 at	 constant	 speed,	 this
acceleration	must	also	be	equal	to	v2/R,	where	v	is	the	speed	of	the
planet.	Equating	these	two	accelerations	gives	GM/R	=	v2.	But	v	 is
related	 to	 the	 time	T	 it	 takes	 for	 the	planet	 to	orbit	 the	Sun	by	v	=
2πR/T,	which	means	that	GM/R	=	4π2R2/T2.	This	tells	us	that	T2/R3

=	4π2/(GM),	which	 is	 constant.	 In	 fact,	what	we	have	done	 is	only
approximately	correct.	The	mass	M	appearing	in	Kepler’s	law	really
should	be	M+m.	This	 is	because	 the	 force	F	also	acts	on	 the	Sun,
causing	it	to	accelerate	too.	This	is	a	small	effect	if	M	is	much	bigger
than	m,	which	 is	the	case	for	all	of	 the	planets	 in	the	solar	system.
Generally	 speaking,	 two	 objects	 will	 orbit	 about	 a	 point	 a	 fraction
m/(M+m)	along	the	line	joining	them.	For	example,	two	equal	mass
objects	will	orbit	around	a	point	midway	between	the	two.

Or	 consider	 the	 orbit	 of	 the	Moon	 around	 the	 Earth.	We	 can	measure	 the
average	distance	from	the	Earth	to	the	Moon,5	R	(385,000	km),	and	the	period	of
the	Moon’s	orbit,	T	(27.3	days).	Newton’s	Universal	Law	of	Gravitation	relates
these	quantities	to	the	mass	of	the	Earth,	M,	through	the	equation	we	derived	in
Box	5:	T2/R3	=	4π2/(GM).	As	 in	 the	case	of	a	dropped	ball,	we	have	a	way	of
determining	 the	 product	GM,	 only	 this	 time	 from	 astronomical	 observations.
Putting	the	numbers	in	gives	GM	=	4.0	×	1014	m3/s2,	as	before.	We	get	the	same
answer	for	a	dropped	ball	and	for	the	orbiting	Moon	because	Newton’s	laws	are
universal;	 they	 encode	 information	 about	 the	 deeper	 physical	 structure	 of	 our
universe.

Armed	with	the	value	of	GM,	we	can	go	ahead	and	determine	either	the	mass
of	the	Earth	(M)	or	the	gravitational	constant	(G),	but	only	if	we	already	know
the	value	of	one	of	them.	So	we	need	some	new	method	to	measure	G	or	M,	but
this	is	not	an	easy	thing	to	do,	because	gravity	is	a	colossally	weak	force.



In	theory,	a	simple	way	to	determine	the	mass	of	the	Earth	would	be	to	measure
the	 amount	 by	 which	 a	 hanging	 plumb-line	 is	 attracted	 towards	 a	 large	 mass
placed	next	 to	 it,	as	 in	Figure	3.6.	 If	we	position	a	ball	of	 lead	with	a	mass	of
1000	 tonnes	 and	a	 radius	 just	under	3	metres,	 so	 that	 its	 centre	 is	horizontally
aligned	 with	 a	 hanging	 mass	 placed	 3	 metres	 away,	 the	 plumb-line	 will	 be
attracted	to	the	ball	by	a	minuscule	angle	of	0.16	arcseconds	from	the	vertical6	(1
arcsecond	 is	 an	 angle	 equal	 to	1/3600th	of	 a	degree).	But	 although	 the	 idea	 is
theoretically	 simple,	 it	 is	 clearly	 not	 an	 easy	 thing	 to	 do	 in	 practice.	 It	 isn’t
cheap,	either:	a	lead	ball	this	big	would	cost	around	a	million	pounds	in	today’s
money.

Two	 classic	 experiments,	 performed	 by	 Nevil	 Maskelyne	 and	 Henry
Cavendish	in	1774	and	1798	respectively,	were	the	first	to	allow	for	an	accurate
determination	of	G.	 It	 is	 testament	 to	 the	difficulty	of	 the	measurements	 that	a
century	 passed	 after	 Newton	 published	 his	 theory	 of	 gravity	 before	 anyone
managed	 to	 perform	 experiments	 capable	 of	 determining	 its	 strength.	 We’ve
been	 careful	 with	 our	 wording	 here	 because,	 for	 historical	 reasons,	 neither
Maskelyne	nor	Cavendish	actually	quoted	 the	value	of	G;	 they	were	both	only
interested	 in	 weighing	 the	 Earth.	 From	 a	 physicist’s	 perspective	 this	 doesn’t
matter	 at	 all,	 because	 once	 you	 have	 one	 quantity	 you	 can	 get	 the	 other	 in	 a
single	line	of	mathematics.

In	 1774,	 the	Reverend	Nevil	Maskelyne,	Astronomer	Royal,	 led	 a	 team	 to
Perthshire,	in	the	Scottish	Highlands,	to	measure	the	deflection	of	a	plumb-line
in	the	vicinity	of	a	mountain	called	Schiehallion.	There,	he	carried	out	what	is	in
essence	 the	 experiment	 illustrated	 in	 Figure	 3.6–except	 that	 he	 replaced	 the
1000-tonne	 ball	 by	 an	 entire	 mountain.	 This	 magnified	 the	 deflection	 of	 the
plumb-line,	 making	 it	 (just	 about)	 measureable.	 Using	 the	 stars	 as	 reference
points,	he	succeeded	in	measuring	a	very	small	deflection	of	11.6	arcseconds	(in
fact,	this	was	the	sum	of	two	deflections	corresponding	to	the	plumb-line	being
located	on	the	north	and	south	sides	of	the	mountain).	Four	years	later,	following
a	 detailed	 survey	 of	 the	 mountain,	 mathematician	 Charles	 Hutton	 used
Maskelyne’s	measured	deflection	to	estimate	the	density	of	the	Earth.	It	was,	he
calculated,	4.5	times	that	of	water,	which	is	quite	a	bit	higher	than	the	density	of
rock.	 Assuming	 that	 the	 Earth	 is	 a	 perfect	 sphere,	 and	 using	 the	 modern
measurement	of	 its	average	 radius,	6370	km,	 this	gives	us	a	mass	of	 the	Earth
equal	to	4.9	×	1024	kg.



Figure	3.6	A	hanging	plumb-line	next	to	a	large	sphere.	The	tangent	of	the

angle	δ	is	the	ratio	of	the	horizontal	pull	of	the	ball	to	the	vertical	pull	of	the
Earth.	According	to	Newton’s	Universal	Law	of	Gravitation,	this	is	just

(Gm/r2)/(GM/R2)	where	R	is	the	radius	of	the	Earth.	The	dependence	on	G
cancels,	giving	tan	δ	=(m/M)×(R/r)2.

The	next	major	step	in	weighing	the	Earth	was	taken	some	twenty	years	later
by	 the	 brilliant	 Henry	 Cavendish,	 using	 a	 remarkable	 experiment	 in	 his	 very
large	house	overlooking	Clapham	Common,	in	south	London.

Cavendish	 was	 an	 eccentric	 man	 of	 independent	 means;	 he	 wore	 old-
fashioned	clothes	 and	was	 famously	very	 shy.	And	he	was	one	of	 the	greatest
scientists	 of	 all	 time–apart	 from	 the	 work	 we	 describe	 here,	 he	 made	 hugely
important	 contributions	 in	 the	 fields	 of	 chemistry	 and	 electricity.	 Today,



Cambridge	 University’s	 Department	 of	 Physics,	 the	 Cavendish	 Laboratory,	 is
named	 after	 him.	 In	 1798,	 Cavendish	 detailed	 the	 results	 of	 his	 experiment–
including	 a	 drawing	 of	 the	 apparatus	 he	 devised	 for	 it–in	 his	 ‘Experiments	 to
Determine	 the	Density	of	 the	Earth’.	He	begins	by	crediting	 the	ex-Cambridge
professor	of	geology	Reverend	 John	Michell	 for	designing	 the	 experiment	 and
building	 the	 first	 version	of	 it;	Michell,	 though,	 died	 in	 1793,	 before	 he	 could
make	 any	 measurements,	 and	 the	 apparatus	 found	 its	 way	 to	 Cavendish	 via
another	 Cambridge	 philosopher-priest,	 the	 Reverend	 Francis	 John	 Hyde
Wollaston.

Figure	3.7	The	layout	of	Henry	Cavendish’s	ingenious	apparatus	to	weigh	the

Earth.

The	 idea	behind	 the	experiment	 is	very	 simple,	 although	 the	precision	with
which	 Cavendish	 made	 his	 measurements	 required	 the	 touch	 of	 a	 brilliant
experimenter.	Two	small	balls	are	hung	from	either	end	of	a	long	beam,	which	is
itself	suspended	by	a	thin	wire.	Two	much	bigger	balls	are	then	moved	close	to
the	small	balls,	one	on	each	side	of	the	beam.	According	to	Newton’s	theory,	the
large	balls	will	exert	a	gravitational	force	on	the	small	balls,	thereby	causing	the



beam	to	twist	slightly.	Cavendish	measured	the	twist,	and	used	the	measurement
to	determine	the	force	that	the	large	balls	exert	on	the	small	ones.7	To	avoid	any
external	disturbances,	he	put	the	apparatus	in	a	closed	room.	The	6-foot	wooden
beam	was	suspended	from	the	point	marked	F	in	Figure	3.7,	and	the	two	small
lead	 balls	 of	 2-inch	 diameter	 were	 hung	 by	 threads	 inside	 the	 boxes	 marked
DCB.	Cavendish	was	able	to	measure	the	twist	of	the	beam	using	two	telescopes
T	 trained	 on	 ivory	 scales	marked	 in	 gradations	 of	 hundredths	 of	 an	 inch.	 The
larger	 12-inch	 diameter	 lead	 balls,	 labelled	 W,	 were	 hung	 by	 copper	 rods
(labelled	 r	 at	 the	 top	 and	R	 at	 the	 bottom)	 and	moved	 into	 place	 by	 a	 pulley
system	 operated	 from	 outside	 the	 room.	 By	making	 it	 possible	 to	 operate	 the
apparatus	remotely,	Cavendish	improved	Michell’s	original	design	substantially,
isolating	his	apparatus	as	much	as	possible	from	unwanted	disturbances.

We’ve	gone	into	some	detail	because	we	love	this	sort	of	thing.	Cavendish’s
experiment	 is	 very	 modern	 in	 many	 ways.	 It	 is	 a	 high-precision	 apparatus
designed	 to	 measure	 the	 tiny	 gravitational	 force	 exerted	 by	 the	 heavy	 balls–a
force	 that	 amounts	 to	 no	 more	 than	 the	 weight	 of	 a	 grain	 of	 sand.	 Success
depended	 on	 Cavendish	 exercising	 extreme	 care,	 observing	 with	 extreme
accuracy,	 and	 developing	 a	 solid	 understanding	 of	 the	 principal	 sources	 of
uncertainty.	He	 considered	 the	 effects	 of	magnetism,	 temperature	 variations	 in
the	room,	variability	in	the	stiffness	of	the	suspension	wire,	the	gravitational	pull
of	 the	 rods	 from	 which	 the	 heavy	 balls	 were	 suspended,	 air	 currents,	 the
gravitational	attraction	of	the	wooden	case	on	the	balls	and	the	beams,	and	more.
He	 operated	 according	 to	 the	 same	 scientific	 principles	 as	 the	 Seymours	 at
Ogmore-by-Sea,	but	with	a	quite	stunning	attention	to	detail	that	was	mandated
by	the	delicacy	and	subtlety	of	the	property	of	Nature	he	wished	to	measure.

In	the	final	analysis,	he	determined	the	mean	density	of	the	Earth	to	be	5.45
times	 that	 of	 water,	 i.e.	 5.45	 grams/cm3.	 As	 Cavendish	 noted,	 in	 respectfully
circumspect	tones:

According	to	the	experiments	made	by	Dr.	Maskelyne,	on	the	attraction	of
the	hill	Schehallien	[sic],	the	density	of	the	earth	is	4½	times	that	of	water;
which	 differs	 rather	 more	 from	 [my	 measurement]	 than	 I	 should	 have
expected.	 But	 I	 forbear	 entering	 into	 any	 consideration	 of	 which
determination	 is	 most	 to	 be	 depended	 on,	 till	 I	 have	 examined	 more
carefully	how	much	[my]	determination	is	affected	by	irregularities	whose
quantity	I	cannot	measure.



Cavendish	 was	 taking	 care	 not	 to	 rush	 to	 conclusions	 but,	 as	 future
measurements	revealed,	he	was	bang	on	the	money.

Charles	 Hutton,	 the	 mathematician	 who	 had	 weighed	 the	 Earth	 using	 the
measurements	 from	 the	Schiehallion	 experiment,	 remained	 extremely	 sceptical
of	 Cavendish’s	 more	 delicate	 measurement	 to	 the	 day	 he	 died.	 In	 1801,
encouraged	 by	 Hutton,	 the	 Scottish	 philosopher-mathematician	 John	 Playfair
conducted	 a	 new	 lithological	 survey	 of	 Schiehallion	 and,	 in	 1811,	 revised
Hutton’s	original	measurement	upwards	 to	4.71.	Two	years	before	his	death	 in
1823,	and	11	years	after	Cavendish	had	died,	Hutton	made	his	views	very	clear
in	 his	 paper	 ‘On	 the	 mean	 density	 of	 the	 Earth’.	 ‘From	 the	 closest	 and	most
scrupulous	attention,’	he	wrote,	‘the	preference,	in	point	of	accuracy,	appears	to
be	decidedly	 in	favour	of	 the	 large	mountain	experiment	over	 that	of	 the	small
balls.’	 He	 spoke	 condescendingly	 of	 Cavendish’s	 ‘pretty	 and	 amusing	 little
experiment’	 and	 sniffed	 at	 the	 veracity	 of	 results	 ‘produced	 by	 machinery	 so
complex’	 and	 ‘calculated	 by	 theorems	 derived	 from	 intricate	 mathematical
investigations’.

Cavendish,	 though,	 was	 right.	 Today,	 the	 best	 measurement	 of	 the	 mean
specific	 density	 of	 the	 Earth	 is	 5.515,	 which	 is	 only	 1.2%	 different	 from
Cavendish’s	 result.	 Cavendish’s	 balls	may	 have	 been	 small,	 but	 he	more	 than
made	up	for	it	with	careful	attention	to	detail	and	a	steady	hand.

There	is	an	interesting	postscript	to	this	story.	In	2007,	an	expert	in	oil	and	gas
exploration	 called	 John	 Smallwood	 revisited	 the	 Schiehallion	 measurement,
using	 modern	 methods	 to	 determine	 the	 geometry	 and	 composition	 of	 the
mountain.	 He	 was	 provoked	 by	 a	 challenge	 issued	 in	 Charles	 Hutton’s	 1821
paper,	 in	which	Hutton	 stated	 categorically	 that	 the	 Earth	was	 ‘very	 near	 five
times	the	density	of	water;	but	not	higher’,	before	 throwing	down	the	gauntlet:
‘Let	any	person,	who	doubts,	look	over	and	repeat	the	calculations…	and	try	if
he	can	to	find	an	inaccuracy	in	them.’	Smallwood	did	just	that.	His	re-analysis,
published	 in	 the	 Scottish	 Journal	 of	 Geology,	 concluded	 that	 Maskelyne’s
original	 measurement	 allows	 one	 to	 conclude	 that	 the	 specific	 density	 of	 the
Earth	is	5.48	with	an	uncertainty	of	0.25.

We	presented	Cavendish’s	number	as	he	published	it,	in	terms	of	the	average
density	 of	 the	Earth.	His	measurement	 corresponds	 to	 a	mass	 for	 the	Earth	 of
5.90	×	1024	kg.	The	modern	value	is	5.97	×	1024	kg.	What	a	ringing	endorsement
of	the	brilliance	of	Cavendish.	If	you	recall,	 the	Seymour	family	measurement,
together	with	our	guess	that	the	Earth	is	a	uniform	sphere	of	granite,	gave	us	a



mass	of	3.4	×	1024	kg.	Not	bad	for	a	day	on	the	beach.
Actually,	 things	 get	 even	 better	 than	 ‘merely’	 measuring	 the	 mass	 of	 the

Earth.	Because	now	 that	we	have	 the	mass	 of	 the	Earth	we	 can	determine	 the
gravitational	 constant,	 G	 =	 4.0	 ×	 1014	 m3/s2/5.97	 ×	 1024	 kg	 =	 6.7	 ×	 10−11
m3/s2/kg.	 And	 with	G	 we	 hit	 the	 jackpot,	 because	 it	 means	 that	 now	we	 can
weigh	 anything	 in	 the	 Universe	 that	 has	 something	 orbiting	 around	 it.	 For
example,	 since	we	 also	 know	 that	 the	 Earth	 orbits	 the	 Sun	with	 a	 period	T	 =
365.25	days	at	a	distance	R	=	150	million	km,	we	can	deduce	(using	the	formula
in	Box	5)	that	the	Sun	is	about	330,000	times	more	massive	than	the	Earth.	And
we	can	keep	going.

Jupiter	 has	 a	 large	 collection	 of	 moons,	 the	 brightest	 of	 which	 were
discovered	by	Galileo	in	1610.	By	observing	their	orbits,	we	have	measured	the
mass	of	Jupiter	to	be	1.898	×	1027	kg;	a	colossal	gas	giant	world	318	times	more
massive	 than	 the	 Earth.	 We	 can	 observe	 clouds	 of	 gas,	 glowing	 in	 the	 radio
spectrum,	 orbiting	 around	 distant	 galaxies,	 and	 this	 allows	 us	 to	 measure	 the
mass	of	 the	galaxies.	Andromeda,	 the	nearest	galaxy	 to	 the	Milky	Way,	 is	1.5
trillion	times	the	mass	of	the	Sun.	Only	a	small	fraction	of	this	mass	is	visible	to
us	in	the	form	of	stars,	however,	which	has	led	astronomers	to	suggest	that	there
is	 an	 ocean	 of	 unseen	 dark	 matter,	 probably	 in	 the	 form	 of	 new,	 as	 yet
undiscovered	subatomic	particles,	permeating	the	galaxies.	There	is	now	a	great
deal	of	independent	evidence	for	the	existence	of	dark	matter	from	studies	of	the
evolution	 of	 the	 Universe	 and	 of	 Cosmic	 Microwave	 Background	 radiation
(we’ll	 look	at	 this	 in	much	more	detail	 later	on),	but	we	should	point	out	here
that	dark	matter	was	first	discovered	using	Newton’s	laws	and	our	knowledge	of
G.	And,	 perhaps	 strangest	 of	 all,	 at	 the	 heart	 of	 the	Milky	Way	 galaxy	 in	 the
direction	of	the	constellation	of	Sagittarius,	there	are	stars	known	as	the	S-stars
with	extreme	orbits	around	a	dense,	compact	object.	Using	Newton’s	 laws,	 the
object	is	measured	to	be	over	4	million	times	the	mass	of	our	Sun.	Astronomers
believe	 this	 exotic	 object	 to	 be	 a	 supermassive	 black	 hole,	 26,000	 light	 years
from	Earth,	devouring	dust	 and	gas	 from	 the	 rich	clouds	 that	drift	 through	 the
dense	central	regions	and	spewing	radiation	out	across	the	galaxy.

Newton’s	laws	are	treasures.	They	were	the	first	universal	laws	of	Nature	to
be	 discovered,	 and	 they	 have	 allowed	 us	 to	 discover	 unimaginable	 things
unfathomably	far	away,	starting	from	the	beach	at	Ogmore-by-Sea.



4.	THE	DISTANCE	TO	THE	STARS

The	stars	are	tiny	specks	of	light	in	the	darkness.	Unlike	the	planets,	they	exhibit
no	extravagant	loops	on	the	sky,	and,	for	the	overwhelming	majority	of	them,	we
have	no	telescope	capable	of	resolving	any	detail	on	their	surfaces.	Beyond	the
nightly	circular	arcs	across	the	sky	induced	by	the	Earth’s	spin,	they	appear	to	be
immobile,	 featureless	points.	And	yet	we	know	 the	distance	 to	each	and	every
one.	 As	 we	 will	 see	 later	 in	 the	 book,	 this	 ability	 to	 map	 the	 cosmos	 with
precision	is	the	Rosetta	Stone	that	will	allow	us	to	explore	the	Universe’s	origin
and	evolution:	the	skies	are	teeming	with	information	and	we	have	learned	how
to	decode	it.

Before	 we	 cast	 our	 gaze	 beyond	 the	 solar	 system,	 we’d	 like	 to	 begin	 by
making	good	on	our	promise	 in	 the	 last	chapter	 to	measure	 the	distance	 to	 the
most	distant	planet	 in	our	solar	system:	Neptune.	The	method	we’ll	use	 is	also
the	method	by	which	we	determine	the	distances	to	the	nearest	stars.	It	is	called
the	parallax	method.

Parallax	is	an	effect	with	which	everyone	is	familiar;	it	is	the	reason	humans
have	 two	 eyes.	 If	 you	 hold	 one	 of	 your	 fingers	 up	 in	 front	 of	 your	 face,	 and
alternately	 close	 one	 eye	 and	 then	 the	 other,	 your	 finger	 will	 appear	 to	 shift
against	 the	 background.	The	 closer	 your	 finger	 is	 to	 your	 face,	 the	 greater	 the
shift.	As	 I	 (Jeff)	am	writing	 this	 I	have	decided	 to	use	parallax	 to	measure	 the
length	 of	my	 own	 arm.	 I	 (Brian)	 am	 not	 in	 the	 least	 surprised.	With	my	 arm
extended,	I	look	at	my	index	finger,	first	with	my	left	eye	closed	and	then	with
my	 right	 eye	 closed.	 I	 notice	 that	 my	 finger	 moves	 by	 about	 8	 degrees.	 I’ve
downloaded	 the	 image	of	a	 large	protractor	onto	my	 laptop	 for	 the	 job.	Figure
4.1	shows	the	geometry,	and,	knowing	that	the	distance	between	my	eyes–which
I	 measured	 with	 a	 ruler–is	 about	 6.5	 cm,	 I	 have	 deduced	 that	 my	 finger	 was
located	 a	 distance	 3.25/tan(4°)	 =	 46	 cm	 away.	 The	 parallax	 shift	 of	 nearby
objects,	discernible	because	we	have	two	separated	eyes,	is	one	of	the	pieces	of
information	our	brains	exploit	to	estimate	distances.	It	is	a	two-eyed	ability	that
has	been	selected	for	in	many	animals.

Unfortunately,	you	can’t	estimate	 the	distance	 to	Neptune	by	winking:	both
because	your	head	 isn’t	big	enough,	 and	because	Neptune	 is	not	visible	 to	 the



naked	eye.	 In	 fact,	 it	 is	 so	 faint	 that	 it	wasn’t	discovered	until	1846,	when	 the
French	mathematician	Urbain	 Le	Verrier	made	 a	 prediction	 of	 a	 new	 planet’s
position	 in	 the	 sky	 using	 Newton’s	 laws,	 based	 on	 his	 own	 observations	 of
irregularities	 in	 the	 orbit	 of	 Uranus.	 He	 sent	 the	 prediction	 to	 the	 German
astronomer	 Johan	 Gottfried	 Galle,	 who	 on	 the	 evening	 of	 23	 September	 duly
found	 it	 after	 only	 an	 hour	 of	 searching.	 Fortunately,	 Le	 Verrier	 was	 able	 to
circumvent	his	lack	of	a	sufficiently	large	head–and	so	too	can	we,	as	Figure	4.2
illustrates.

The	position	of	Neptune	 against	 the	 fixed	background	 stars	 changes	due	 to
parallax	as	the	Earth	moves	around	the	Sun,	providing	us	with	different	vantage
points	 every	 evening.	 This	 figure	 shows	 the	 situation	 when	 Neptune	 is	 ‘in
opposition’,	which	means	it	is	lined	up	with	the	Earth	and	the	Sun.	We	chose	to
make	 the	 measurement	 close	 to	 opposition	 because	 it	 makes	 the	 mathematics
easier,	but	 it	 is	not	hard	 to	perform	 the	calculation	at	 any	other	 time.	 In	2014,
this	 planetary	 alignment	 occurred	 on	 Friday	 29	 August,	 and	 we	 asked	 Kevin
Kilburn,	 an	 amateur	 astronomer	with	 the	Manchester	Astronomical	Society,	 to
photograph	 Neptune	 for	 us	 around	 the	 time	 of	 opposition.	 He	 obtained	 four
photographs	 on	 19	 August,	 29	 August,	 9	 September	 and	 21	 September–very
probably	 the	 only	 clear	 nights	 in	 late-summer	 Manchester	 that	 year.	 We
superimposed	 the	 photographs	 on	 top	 of	 each	 other,	 lining	 them	 up	 using	 the
background	stars;	the	resulting	image	is	shown	in	Figure	4.3	(p.	85).

Figure	4.1	Overhead	view	of	Jeff’s	head	and	finger.	Direction	1	corresponds	to

the	direction	in	which	his	finger	appears	when	his	left	eye	is	closed,	direction	2

when	his	right	eye	is	closed.



Figure	4.2	Just	like	the	previous	figure,	except	the	eyes	are	replaced	by	two

positions	of	the	Earth	in	its	orbit	around	the	Sun	and	the	finger	is	replaced	by

Neptune.	By	measuring	how	much	Neptune	shifts	its	angular	position	with

respect	to	the	distant	stars	(they	are	so	far	away	that	their	angular	deflection	is

much	smaller	than	Neptune’s),	we	can	deduce	the	distance	to	Neptune.

The	procedure	for	determining	the	distance	to	Neptune	is	precisely	the	same
as	 the	 one	 Jeff	 used	 to	 calculate	 the	 length	 of	 his	 arm.	We	 need	 to	 know	 the
‘distance	 between	 the	 eyes’,	 which	 is	 the	 distance	 the	 Earth	moves	 from	 one
photograph	to	the	next,	and	the	angle	through	which	Neptune	shifts	against	the
starry	background	during	this	time,	which	we	can	get	from	the	photographs.	We
describe	every	step	of	 this	process	 in	detail	 in	Box	6	 (pp.	85–7),	 and	we	hope
you	decide	to	follow	it	through,	because	it’s	a	lovely,	very	simple	measurement
that	 you	 might	 choose	 to	 perform	 for	 yourself.	 Our	 calculation,	 using	 only
Kevin’s	 photographs,	 gives	 the	 distance	 of	 Neptune	 from	 the	 Sun	 as	 30.33
Astronomical	 Units	 (AU).	 The	 official	 figures	 tell	 us	 that	 Neptune	 was	 at	 a
distance	of	29.96	AU	from	the	Sun	on	29	August	2014,	which	differs	from	our
measurement	by	about	1%.

This	parallax	method	can	only	deliver	the	distance	to	Neptune	in	terms	of	the
Earth–Sun	 distance	 (which	 is	 1	 AU).	 If	 we	 want	 to	 express	 astronomical
distances	in	terms	of	metres	then	we	need	to	figure	out	what	1	AU	actually	is	in
metres.	In	the	last	chapter	we	dealt	with	this	by	noting	that	we	can	ascertain	the
radius	 of	 Venus’	 orbit	 around	 the	 Sun	 by	 two	 different	 methods.	 First	 (as
illustrated	 in	Figure	3.4)	using	 trigonometry	(the	 result	 is	around	0.7	AU)	and,
second,	 by	 bouncing	 radar	 off	 the	 planet	 (the	 result	 is	 108	million	 km).	 That



information	 is	 sufficient	 to	establish	 that	1	AU	 is	around	150	million	km.	The
Astronomical	Unit	is	one	of	the	most	important	numbers	in	astronomy,	because
it	 unlocks	 the	 whole	 distance	 ladder.	 What’s	 more,	 the	 pre-radar	 quest	 for	 a
precision	measurement	of	an	absolute	distance	between	any	two	celestial	objects
is	one	of	the	great	stories	in	the	history	of	science,	spanning	many	centuries.

In	 determining	 distances	 using	 parallax,	 we	 use	 two	 vantage	 points	 on	 the
Earth’s	surface,	or	two	points	on	the	Earth’s	orbit	around	the	Sun–the	equivalent
of	 two	eyes.	For	 example,	 on	 a	 clear	 night,	we	 could	 take	 two	photographs	 at
precisely	the	same	time	from	two	different	points	on	the	surface	of	the	Earth.	If
we	 know	 the	 distance	 between	 the	 cameras,	 then	 we	 could	 use	 parallax	 to
determine	the	distance	to	the	object	we	photographed.	This	would	be	difficult	to
do	for	Neptune,	though,	because	it	is	too	far	away	and	the	parallax	shift	would
be	very	small.	For	 this	 reason,	 in	our	measurement	of	 the	distance	 to	Neptune,
we	 increased	 the	 distance	 between	 the	 two	 vantage	 points	 by	 waiting	 for	 the
Earth	to	move	around	the	Sun.	But	measuring	distances	using	the	view	from	two
different	points	on	Earth	is	viable	for	less	distant	planets.

In	1672,	when	Mars	was	in	opposition,	the	great	Italian	astronomer	Giovanni
Cassini	and	his	colleague	Jean	Richer	made	a	measurement	 for	 the	parallax	of
Mars.	 Richer	 observed	 the	 position	 of	 Mars	 from	 French	 Guiana	 in	 South
America,	and	Cassini	worked	from	Paris.	They	knew	the	‘distance	between	the
eyes’	with	 reasonable	precision,	 and	 from	 this	 they	were	 able	 to	 calculate	 that
the	Astronomical	Unit	is	approximately	21,700	Earth	radii.	It	was	a	pretty	good
attempt.	The	modern	value	is	23,455	Earth	radii.

There	 is	 a	 whole	 book	 to	 be	 written	 on	 the	 numerous	 expeditions	 the
explorers	 and	 astronomers	 of	 the	 seventeenth,	 eighteenth	 and	 nineteenth
centuries	 embarked	upon	 to	 refine	 the	measurement	 of	 the	Astronomical	Unit.
We	 aren’t	writing	 that	 book,	 but	we	 cannot	 resist	mentioning	 the	 story	 of	 the
French	 astronomer	 Guillaume	 Le	 Gentil.	 One	 of	 the	 classic,	 high-precision
parallax	measurements	can	be	made	during	a	transit	of	Venus,	which	is	when	the
planet	 crosses	 the	 face	 of	 the	 Sun	 as	 seen	 from	 Earth.	 Because	 of	 parallax,
observations	 of	 the	 transit	 from	 two	 different	 points	 on	 the	 Earth	 will	 differ,
something	which	can	be	exploited	to	ascertain	the	distance	to	Venus.	Transits	of
Venus	come	 in	pairs,	8	years	apart,	 and	 then	do	not	 repeat	 for	over	a	century.
The	most	recent	transit	occurred	in	June	2012;	there	will	not	be	another	one	until
December	2117.	So	if	you	really	want	to	make	a	precision	measurement	of	the
Astronomical	Unit,	 you	don’t	want	 to	miss	 it–and,	 back	 in	 the	mid	 eighteenth
century,	Guillaume	Le	Gentil	certainly	didn’t.



In	 March	 1760,	 Le	 Gentil	 left	 Paris	 and	 headed	 for	 the	 Indian	 city	 of
Pondicherry	as	one	of	an	international	team	of	over	a	hundred	observers	sent	out
across	the	planet	to	make	multiple	observations	of	the	Venus	transit	of	1761.	He
made	it	to	Mauritius,	then	known	as	the	Isle	de	France,	in	July	of	that	year,	but
one	of	the	regular	wars	between	France	and	Britain	made	his	onward	journey	too
dangerous.	Finally,	in	March	1761	he	managed	to	board	a	ship	bound	for	India,
and	although	the	ship	was	blown	off	course	he	still	made	it	to	Pondicherry	with
days	to	spare.	Unfortunately,	the	British	had	occupied	Pondicherry	and	the	ship
couldn’t	land,	so	the	captain	swung	it	around	and	headed	back	to	Mauritius.	The
day	 of	 the	 transit	 was	 beautifully	 clear,	 but	 with	 the	 ship	 still	 in	 open	 sea,
pitching	and	rolling,	precise	astronomical	observations	were	impossible.

Undaunted,	Le	Gentil	 decided	 to	wait	 eight	 years	 in	 and	 around	 the	 Indian
Ocean	for	the	transit	of	1769,	and	after	spending	some	time	mapping	the	coast	of
Madagascar	he	headed	for	Manila	in	the	Philippines.	But	the	Spanish	in	Manila
were	 not	 helpful,	 so	 he	 returned	 to	 Pondicherry	 and	 built	 an	 observatory	 in
readiness	for	his	vital	moment.	When	the	morning	of	4	June	1769	duly	arrived,	it
turned	out	to	be	the	only	cloudy	day	in	weeks,	and	he	missed	the	transit.	After	a
few	 miserable	 months,	 he	 finally	 boarded	 a	 ship	 bound	 for	 home,	 but	 an
outbreak	of	dysentery	and	severe	storms	resulted	in	him	being	dropped	off	at	La
Réunion,	 off	 the	 eastern	 coast	 of	Madagascar.	He	was	 finally	 able	 to	 board	 a
Spanish	 ship	 to	 take	 him	 back	 to	 Paris,	 where	 he	 arrived	 in	 October	 1771	 to
discover	 that	 he	 had	 been	 declared	 legally	 dead,	 his	 wife	 had	 remarried,	 his
relatives	had	sold	his	estate,	and	he	had	lost	his	position	in	the	Royal	Academy
of	Sciences,	which	had	dispatched	him	on	the	expedition	in	the	first	place.	This
must	surely	have	been	the	moment	for	which	the	phrase	‘For	fuck’s	sake!’	was
invented.	 To	 put	 your	 mind	 at	 rest,	 Le	 Gentil	 was	 reinstated	 at	 the	 Royal
Academy	of	Sciences,	remarried	and	lived	a	happy	life	for	a	further	twenty-one
years.

This	 story	 goes	 to	 show	 the	 sheer	 commitment	 of	 these	 pioneers,	 who
understood	the	importance	of	measuring	the	distance	between	the	Earth	and	the
Sun	 and	 thereby	 unlocking	 the	 distance	 scale	 that	 allows	 us	 to	 measure	 the
Universe	 today.	These	scientists	and	explorers	were	brilliant,	dedicated	people,
who–as	the	case	of	Le	Gentil	shows–spent	 their	 lives	attempting	to	acquire	the
extremely	hard-won	knowledge	upon	which	our	understanding	of	 the	Universe
now	rests.

Using	 the	parallax	method,	we	made	a	precise	measurement	of	 the	distance	 to



Neptune,	 the	most	 distant	 planet	 in	 the	 solar	 system.	This	 raises	 the	 question:
how	far	out	into	the	cosmos	can	we	go	with	the	parallax	method?	Well,	we	can
certainly	measure	the	parallax	shifts	of	the	nearest	stars.	Because	the	Earth	orbits
the	 Sun,	 the	 closest	 stars	 will	 oscillate	 back	 and	 forth	 across	 a	 small	 angular
region	 of	 the	 sky,	 and	 the	 extent	 of	 that	 back-and-forth	 motion	 allows	 us	 to
determine	how	 far	 the	 star	 is	 away.	With	 this	 in	mind,	 the	maximum	possible
baseline1	for	a	parallax	measurement	is	the	diameter	of	the	Earth’s	orbit	(2	AU),
which	 corresponds	 to	making	measurements	 of	 the	 parallax	 shift	 of	 a	 star	 six
months	apart.	The	 first	determination	of	 the	distance	 to	a	 star	was	made	using
this	 method	 in	 1838	 by	 the	 German	 mathematician	 and	 astronomer	 Friedrich
Bessel,	 who	 observed	 that	 the	 star	 61	 Cygni	 has	 a	 parallax	 angle	 of	 0.314
arcseconds	(which	means	the	extremes	in	its	position	in	the	sky	are	separated	by
0.628	arcseconds,	because	astronomers	define	 the	parallax	angle	 to	be	half	 the
angular	shift).	Using	 this,	he	concluded	 that	 its	distance	from	the	Earth	 is	10.4
light	years,2	which	is	close	to	the	modern	value	of	11.4	light	years.

BOX	6.	MEASURING	THE	DISTANCE	TO	NEPTUNE

Kevin	Kilburn	took	the	photographs	of	Neptune	shown	in	Figure	4.3
using	 a	 300	 mm	 Zeiss	 Pentacon	 lens	 on	 a	 Canon	 550D	 digital
camera,	 attached	 to	 a	 Skywatcher	 EQ5	 equatorial	 mount.	 The
mount	 allows	 the	 camera	 to	 track	 with	 the	 rotation	 of	 the	 Earth,
meaning	that	a	20-second	exposure	can	be	made	without	the	image
being	 blurred.	 The	 four	 photographs	 in	 the	 figure	were	 taken	 over
the	 course	 of	 a	 month	 in	 August	 and	 September	 2014.	 We	 used
Adobe	 Photoshop	 to	 stack	 the	 photographs	 on	 top	 of	 each	 other,
such	that	all	of	the	background	stars	line	up.	The	motion	of	Neptune
across	the	sky	is	evident:	it	is	the	only	thing	that	moves.	It	is	possible
to	 make	 parallax	 measurements	 of	 the	 brighter	 planets	 using
virtually	any	digital	camera–and	here,	a	normal	fixed	photographer’s
tripod	 can	 be	 used,	 because	 the	 exposure	 times	 can	 be	 much
shorter.	Despite	 needing	 slightly	more	 expensive	 gear,	 though,	 it’s
worth	 using	 Neptune;	 the	 maths	 is	 slightly	 simpler,	 because
Neptune’s	motion	relative	to	the	background	stars	is	mainly	a	result
of	the	Earth’s	motion	around	the	Sun.



Figure	4.3	Neptune	(circled)	moving	across	the	sky	relative	to	the	stars	in

August/September	2014.	Photographs	by	Kevin	Kilburn	of	the

Manchester	Astronomical	Society.

If	 we	 know	 the	 speed	 at	 which	Neptune	moves	 across	 the	 sky
when	 it	 is	 in	 opposition,	 then	we	 can	 easily	work	 out	 how	 far	 it	 is
away	 from	 the	Sun.	To	see	how	 this	 is	done,	 look	again	at	Figure
4.2.	For	the	moment	we	will	 ignore	the	fact	that	Neptune	is	orbiting
around	the	Sun.	Neptune’s	orbit	won’t	affect	our	measurements	too
much,	because	 it	 takes	165	years	 to	make	one	complete	 circle	 so
from	our	perspective	won’t	move	much	over	the	course	of	a	month–
but	in	any	case	we	will	correct	for	this	later	on.	The	figure	shows	the
Earth	 at	 two	 points	 in	 its	 orbit	 around	 the	 Sun,	 marked	 A	 and	 B.



These	could	 represent	 two	of	 our	photographs.	The	corresponding
shift	in	the	position	of	Neptune	against	the	stars	is	the	angle	marked
α.	The	distance	between	points	A	and	B	 is	approximately	equal	 to
(α/360°)×2πR,	where	R	 is	 the	distance	from	the	Earth	 to	Neptune–
which	of	course	is	what	we	want	to	know.	We	can	also	calculate	the
distance	 between	 points	 A	 and	B	 another	way:	 it	 is	 approximately
equal	 to	 the	distance	 the	Earth	 travels	around	 the	Sun	 in	 the	 time
between	 photographs,	 i.e.	 (the	 circumference	 of	 the	 Earth’s	 orbit
around	the	Sun)	×	(the	time	between	measurements)	/	(1	year).

This	means	that

R	=	 (the	 time	between	measurements)	 /	 (1	year)	 /	 (the	angle	α	 by
which	Neptune	moved	across	the	sky	between	measurements	/	360
degrees)	×	1	AU

All	 that	 remains	 is	 to	determine	α	 from	 the	photographs.	The	 table
below	 lists	 the	 pixel	 positions	 of	Neptune,	 obtained	 by	 loading	 the
5184	×	3456	pixel	images	into	Photoshop.	We	will	focus	on	the	first
two	measurements,	taken	on	19	and	29	August,	the	latter	being	the
day	 when	 Neptune	 was	 in	 opposition.	 We	 need	 to	 convert	 the
change	 in	pixel	 co-ordinates	 into	 the	angle	 through	which	Neptune
moved	on	the	sky.	The	change	in	the	horizontal	pixel	co-ordinate	is
(2950–2640)	=	310,	and	the	change	in	the	vertical	pixel	co-ordinate
is	(1756–1629)	=	127.	We	can	convert	this	into	an	angle	if	we	know
the	 image’s	 field	of	view,	by	which	we	mean	 the	angular	portion	of
the	sky	covered	by	one	of	 the	photographs.	We	can	determine	 the
field	of	view	as	follows.	The	sensor	on	a	Canon	550D	camera	is	22.3
mm	 ×	 14.9	 mm	 across.	 If	 you	 decide	 to	 make	 your	 own
measurement,	 you’ll	 need	 to	 look	 in	your	camera’s	user	manual	 to
find	the	sensor	size.	Figure	4.4	shows	two	rays	travelling	from	points
in	the	sky	into	the	300	mm	focal-length	lens	and	landing	on	the	very
top	and	very	bottom	of	the	sensor.



The	tangent	of	the	angle	marked	θ	(theta)	is	equal	to	(14.9	mm/2)
(300	 mm),	 which	 means	 θ	 =	 1.42º.	 This	 means	 that	 the	 top	 and
bottom	of	any	photograph	taken	with	these	settings	has	an	angular
spread	of	2.845º	degrees.	We	can	do	 the	same	 for	 light	coming	 in
from	the	left	and	right.	In	that	case	the	tangent	of	the	relevant	angle
is	 (22.3	mm	2)	 (300	mm),	which	gives	an	angular	 spread	equal	 to
4.26º.	 Kevin’s	 photos	 therefore	 cover	 a	 patch	 of	 the	 sky	 equal	 to
4.26	×	2.845	square	degrees,	which	is	approximately	1	3400th	of	the
entire	 sky.	 The	 images	 shown	 in	 Figure	 4.3	 correspond	 to	 a
zoomed-in	portion	of	this.	Because	the	change	in	angle	is	so	small,
we	can	use	Pythagoras’	Theorem	to	determine	that,	between	those
two	dates,	Neptune	travelled	across	the	sky	through	an	angle	equal
to	 	degrees.

Figure	4.4	Determining	the	field	of	view	of	Kevin’s	camera.

Armed	 with	 this	 angle	 we	 can	 use	 the	 underlined	 formula
opposite	to	deduce	that	the	distance	from	Earth	to	Neptune	is	1	AU



×	10.03	days	365.26	days	(0.2754	/	360)	=	35.9	AU.
But	we	are	being	premature.	We	can	and	should	account	for	the

fact	 that	Neptune	 creeps	 slowly	 across	 the	 sky	as	 it	 too	orbits	 the
Sun.	 This	 corresponds	 to	 a	 steady	 movement	 across	 the	 sky	 in
exactly	the	opposite	direction	to	that	generated	by	the	Earth’s	motion
around	the	Sun.	Neptune	therefore	moves	through	an	angle	of	360	/
164.8	 /	365.26	=	0.00598	degrees	per	day.	This	must	be	added	 to
the	angle	we	computed	above,	and	means	that	the	correct	parallax
angle	 is	 (0.2754	+	0.0598)	=	0.3352	degrees.	With	 this	 correction,
we	 can	 use	 the	 underlined	 formula	 to	 deduce	 that	 the	 distance	 to
Neptune	was	29.49	AU,	which	means	 that,	 since	 the	planets	were
aligned,	the	distance	from	the	Sun	to	Neptune	was	30.49	AU.

It	is	possible	to	do	a	little	bit	better	than	this,	and	account	for	the
fact	 that	 Neptune	 was	 not	 quite	 in	 opposition	 on	 19	 August	 2014
because	 the	 Earth	 was	 not	 yet	 in	 line.	 Doing	 the	 trigonometry	 to
account	for	this	changes	the	30.49	AU	to	30.33	AU.	We	do	not	do	it,
but	 the	optimal	 use	of	Kevin’s	 photos	would	 also	make	use	of	 the
other	two	measurements.	If	you	want	to	do	so	then	be	aware	that	21
September	 2014	 is	 over	 3	 weeks	 after	 opposition,	 so	 the
trigonometry	is	not	as	straightforward.

Parallax	measurements	 are	 so	 fundamental	 that	 astronomers	 have	 created	 a
measure	 of	 distance	 directly	 related	 to	 them.	 If	 a	 star	 has	 a	 parallax	 of	 1
arcsecond,	 it	 is	 defined	 as	 being	 1	 parsec	 away.	These	 angular	 shifts	 are	 very
small,	which	is	why	we	do	not	perceive	a	shift	in	the	shape	of	the	constellations.
Aristotle	 used	 the	 lack	of	 a	 perceived	parallax	 shift	 of	 the	 stars	 to	 argue	 for	 a
stationary	 Earth;	 in	 large	 part	 his	 logic	was	 sound,	 but	 he	 underestimated	 the
distances	 involved	 and	 instead	 of	 saying	 that	 ‘no	 parallax	 implies	 the	Earth	 is
stationary’,	 he	 ought	 to	 have	 considered	 the	 alternative	 hypothesis,	 that	 ‘no
observed	 parallax	 means	 that	 the	 stars	 are	 a	 long	 way	 away’.	 To	 put	 the
smallness	 of	 stellar	 parallax	 angles	 into	 context,	 the	 angular	 size	 of	 the	 full
Moon	is	approximately	2000	arcseconds	and	the	nearest	star	 to	Earth,	Proxima
Centauri,	exhibits	a	parallax	of	just	0.762	arcseconds,	which	means	it	is	1	/	0.762
=	1.31	parsecs	away;	1	parsec	is	equal	to	3.26	light	years,	which	is	the	distance
that	 light	 travels	 in	3.26	years.3	Even	 the	nearest	 stars	are	mind-bogglingly	 far
away.



With	modern	technology,	parallax	measurements	as	small	as	10	millionths	of
one	arcsecond	can	be	made.	The	most	accurate	measurements	to	date	are	being
made	by	the	European	Space	Agency’s	Gaia	satellite.	It	was	launched	into	orbit
around	the	Sun	in	December	2013	from	French	Guiana,	the	location	from	which
Jean	 Richer	 helped	 to	 make	 the	 first	 accurate	 parallax	 measurement	 of	 Mars
almost	350	years	earlier.	Gaia’s	precision	translates	into	parallax	measurements
out	to	distances	of	tens	of	thousands	of	light	years,	bringing	a	large	fraction	of
the	stars	in	the	Milky	Way	within	our	reach.

When	we	consider	distances	 to	galaxies	 lying	beyond	our	own	Milky	Way,
we’ll	 have	 to	 deal	 with	 distances	 measured	 in	 megaparsecs,	 or	 Mpc.	 A
megaparsec	is	a	million	parsecs:	3.26	million	light	years.	The	minuscule	parallax
angles	associated	with	such	distant	objects	are	 impossible	 to	measure,	so	 if	we
want	 to	 map	 the	 Universe	 beyond	 the	Milky	Way,	 we	 need	 to	 develop	 other
methods.	 Even	 so,	 it	 remains	 the	 case	 that	 all	 distance	 measurements	 in
astronomy	ultimately	rely	on	parallax	methods–if	not	directly,	 then	to	calibrate
them.

On	moonless	nights	away	from	lights,	the	sky	is	ablaze	with	stars,	and	every
one	visible	 to	 the	naked	eye	is	 inside	our	galaxy.	There	are	so	many	worlds	 in
the	 rich	 starfields	 sweeping	 through	 the	 constellations	 of	 the	 galactic	 plane–
Cassiopeia,	Perseus,	Sagittarius–that	the	light	from	a	billion	suns	merges	into	a
continuous	glowing	arch	that,	when	viewed	from	the	true	darkness	and	still	air	of
high	mountain	or	desert,	delivers	the	sensation	of	standing	alone	on	the	edge	of	a
galaxy.	 The	 Milky	Way	 is	 vast	 beyond	 imagination.	 ‘Somewhere,	 something
incredible	is	waiting	to	be	known,’	wrote	Carl	Sagan.



Figure	4.5	The	Milky	Way	from	the	Australian	desert.



Close	 to	 the	 ‘W’	 of	 Cassiopeia,	 in	 the	 constellation	 of	 Andromeda,	 the
unaided	eye	can,	just,	catch	a	faint	glimpse	of	a	misty	patch	that	lies	beyond;	it	is
the	Andromeda	 galaxy,	 our	 closest	 large	 galactic	 neighbour.	 There	 are	 people
alive	today	who	were	born	before	this	was	known.

Until	 the	morning	after	 the	night	of	5	October	1923,	 it	was	possible	 to	 take
the	 view	 that	 our	 home	 galaxy	 constituted	 the	 entire	Universe,	 and	 that	 those
misty	patches	were	structures	inside	the	Milky	Way.	We	can	date	with	precision
the	moment	when	the	last	vestiges	of	our	pre-Copernican	centrality	were	kicked
away,	 because	 on	 that	 evening,	 at	Mount	Wilson	 in	 California,	 the	 American
astronomer	Edwin	Hubble	took	a	45-minute	exposure	of	the	Andromeda	Nebula
with	 the	100-inch	Hooker	 telescope.	 In	 the	now-famous	photograph,	 shown	 in
Figure	4.6,	Hubble	recognized	three	bright	stars	that	had	not	been	present	in	his
previous	 photographs.	 He	 assumed	 that	 they	 were	 novae–bright	 flares	 from
small,	dense	white	dwarf	stars	caused	by	the	accretion	of	matter	from	an	orbiting
stellar	 companion–and	marked	 them	 on	 the	 photographic	 plate	 with	 the	 letter
‘N’.	The	following	day,	checking	through	the	observatory’s	archive	photographs
of	 Andromeda	 to	 confirm	 his	 result,	 he	 noticed	 that	 one	 of	 the	 novae	 was
sometimes	present	and	sometimes	not;	it	appeared	and	disappeared	with	a	period
of	 approximately	 thirty-one	 days.	 He	 immediately	 realized	 that	 this	 wasn’t	 a
nova,	 but	 a	 type	 of	 star	 known	 as	 a	 Cepheid	 variable,	 which	 changes	 its
brightness	 like	clockwork.	He	excitedly	crossed	out	 the	 ‘N’	on	his	photograph
and	wrote	‘VAR!’	next	to	the	star.

To	understand	why	Hubble	was	excited	enough	to	use	an	exclamation	mark,
we	must	step	back	a	further	fifteen	years.	In	1908,	an	astronomer	at	the	Harvard
College	Observatory	called	Henrietta	Leavitt	published	a	paper	with	her	fellow
astronomer	 Edward	 Charles	 Pickering,	 in	 which	 she	 reported	 a	 relationship
between	the	brightness	of	Cepheid	variable	stars	sitting	in	the	Small	Magellanic
Cloud4	and	 their	period.	The	period	 is	 the	 length	of	 time	over	which	 the	star’s
brightness	varies,	 i.e.	 the	 time	from	bright	 to	dull	back	 to	bright	again.	Leavitt
expressed	the	relationship	in	simple,	precise	prose:	‘It	 is	worthy	of	note	that	in
Table	 VI	 the	 brighter	 variables	 have	 longer	 periods.	 It	 is	 also	 noticeable	 that
those	 having	 the	 longest	 periods	 appear	 to	 be	 as	 regular	 in	 their	 variations	 as
those	which	pass	 through	 their	changes	 in	a	day	or	 two.’	Leavitt’s	observation
became	the	basis	of	what	 is	now	known	as	 the	period–luminosity	relation.	The
key	observation	 is	 that	 the	period	of	a	variable	star	 is	 indicative	of	 its	 inherent
brightness.



Figure	4.6	The	photographic	plate	taken	by	Edwin	Hubble	at	Mount	Wilson

Observatory	on	5	October	1923.

To	understand	why	this	was	one	of	the	most	important	breakthroughs	in	the
history	of	astronomy,	recall	our	problem	with	the	measurement	of	the	distances
to	very	remote	objects:	 their	parallax	shifts	are	too	small	 to	be	detectable.	This
looks	like	a	very	serious	problem	at	first	sight.	Stars	are	points	of	light	with	no
discernible	structure,	and	the	distant	ones	do	not	appear	to	move.	All	we	have	is
their	light.	The	most	obvious	difference	between	stars	is	their	brightness.	If	one
star	 is	brighter	 than	another,	 two	obvious	 reasons	spring	 to	mind:	 the	star	may
actually	 be	 brighter,	 or	 it	 may	 be	 inherently	 less	 bright	 but	 closer	 to	 us.	 To
simplify	the	logic,	imagine	if	all	stars	were	of	the	same	intrinsic	brightness:	we
could	then	use	the	observed	brightness	of	a	star	to	determine	how	far	away	it	is



relative	 to	 the	 other	 stars.	 For	 example,	 a	 star	 that	 was	 twice	 as	 far	 away	 as
another	 would	 be	 ¼	 as	 bright.5	 Now,	 if	 we	 used	 parallax	 to	 determine	 the
distance	to	just	one	nearby	star	then	we	could	determine	the	distance	to	any	other
star	by	comparing	its	brightness	to	the	nearby	star.

The	 trouble	 is	 that	 the	 inherent	brightness	of	a	star	 typically	depends	on	 its
mass	and	age.	Sirius	is	the	brightest	star	in	the	night	sky.	It	is	only	8.6	light	years
away,	but	it	is	twice	as	massive	and	25	times	more	luminous	than	our	Sun.	Rigel,
in	the	constellation	of	Orion,	is	the	seventh	brightest	star	in	the	night	sky,	but	it
is	around	860	light	years	away.	Rigel	is	a	supergiant	star,	with	a	diameter	around
a	 hundred	 times	 that	 of	 the	 Sun,	 and	 it	 is	 200,000	 times	more	 luminous.	 The
most	luminous	known	star	is	in	the	Large	Magellanic	Cloud.	It	is	a	Wolf-Rayet
star	known	as	RMC	136a1.	It	shines	with	the	brightness	of	8.7	million	suns,	and
is	315	times	more	massive.	It	can	be	seen	with	a	small	telescope,	even	though	it
is	 163,000	 light	 years	 away.	 So	 you	 see	 the	 problem	 with	 using	 observed
brightness	as	a	proxy	for	distance.

The	importance	of	Leavitt’s	period–luminosity	relation	is	that	it	sidesteps	this
problem	by	providing	a	sample	of	stars	with	known	relative	brightness.	This	is
so	important	that	it	is	worth	spelling	it	out	in	some	detail.	Imagine	that	there	are
two	Cepheids	with	precisely	 the	 same	period.	According	 to	Leavitt,	 they	must
also	have	 the	 same	 intrinsic	brightness.	Now	suppose	 that	 one	of	 them	 is	 four
times	as	bright	as	the	other,	as	seen	from	Earth.	Immediately,	we	can	conclude
that	the	brighter	star	must	be	half	as	far	away	as	the	dimmer	star.	Using	Leavitt’s
period–luminosity	 relation,	 we	 can	 therefore	 determine	 the	 distance	 to	 any
Cepheid	 variable	 star	 in	 the	 sky,	 including	 the	 one	 Hubble	 identified	 in
Andromeda,	provided	that	we	know	the	distance	to	at	least	one	of	them.

But	 we	 already	 know	 how	 this	 can	 be	 done:	 we	 should	 look	 for	 nearby
Cepheids	 whose	 distance	 can	 be	 determined	 by	 parallax.	 In	 1913	 the	 Danish
astronomer	Ejnar	Hertzsprung	made	 the	 first	measurement	of	 the	parallax	of	 a
Cepheid	variable.	The	star	delta	Cephei,	from	which	Cepheid	variables	take	their
name,	 has	 a	 parallax	 of	 3.77	 milli-arcseconds,	 which	 puts	 it	 at	 a	 distance	 of
approximately	890	light	years	(this	is	the	modern	measurement).	It	has	a	period
of	5.366341	days.	This	is	the	‘standard	candle’,	the	star	that	Hertzsprung	used	to
calibrate	Leavitt’s	ruler.

(A	 brief	 historical	 aside:	 scientists	 are	 only	 human.	 In	 his	 original	 paper,
Hertzsprung	got	the	parallax	to	delta	Cephei	correct,	but	made	a	simple	error	in
his	 estimate	 of	 the	 distance	 to	 the	 Small	 Magellanic	 Cloud	 using	 Leavitt’s
relation,	which	he	quoted	as	only	3000	 light	years.	This	was	a	 trivial	mistake,



which	was	quickly	noticed,	but	for	some	reason	Hertzsprung,	one	of	the	greatest
modern	astronomers,	never	bothered	to	correct	it	in	the	literature.)

Edwin	 Hubble	 knew	 all	 about	 these	 measurements	 on	 the	 morning	 of	 6
October	1923–hence	his	excitedly	scribbled	‘VAR!’	His	discovery	of	a	Cepheid
in	 the	 Andromeda	 nebula	 allowed	 him	 to	 determine	 the	 distance,	 which	 he
calculated	 to	be	a	 shockingly	 large	900,000	 light	years.	Modern	measurements
of	the	distance	to	Andromeda,	based	in	part	on	a	better	understanding	of	Cepheid
variable	 stars,6	 put	 the	 giant	 spiral	 at	 an	 even	 greater	 distance	 of	 2.54	million
light	 years.	 Historically,	 the	 factor	 of	 nearly	 three	 makes	 little	 difference
because,	whichever	way	you	look	at	it,	Hubble	had	determined	that	Andromeda
sits	 well	 outside	 of	 the	 Milky	 Way	 (which	 is	 only	 100,000	 light	 years	 in
diameter).	He	had	shown	conclusively	that	Andromeda	could	not	be	a	nebula–a
cloud	of	stars,	gas	and	dust	inside	our	galaxy.	It	is	a	separate	island	of	stars,	so
distant	that	the	light	reaching	us	now,	which	you	may	be	able	to	glimpse	tonight
with	a	decent	pair	of	binoculars	from	your	back	garden,	began	its	journey	long
before	there	was	such	a	thing	as	a	human	being	on	planet	Earth.



Figure	4.7	The	Hubble	eXtreme	Deep	Field	(XDF)	image.	Almost	every	patch

of	light	is	a	galaxy,	and	there	are	over	5500	galaxies	visible	in	this	picture.



Figure	4.8	M81,	Bode’s	Galaxy,	and	M82,	the	Cigar	Galaxy.	Located	12

million	light	years	away,	they	are	visible	with	binoculars.	Intense	star	formation

in	M82	is	caused	by	its	interaction	with	M81:	the	two	galaxies	are	separated

by	only	150,000	light	years.

If	you	do	venture	out	 tonight	with	your	binoculars,	you	may	be	able	 to	see
other	nearby	galaxies;	M81	and	M82	in	Ursa	Major	are	a	good	start,	at	a	distance
of	around	12	million	light	years,	which	we	know	thanks	to	Cepheids.7

More	 powerful	 telescopes	 reveal	 greater	 numbers	 of	 galaxies.	 Figure	 4.7
shows	 the	 Hubble	 eXtreme	 Deep	 Field	 (XDF)	 image,	 a	 very	 long-exposure
photograph	 taken	 by	 the	 Hubble	 Space	 Telescope	 during	 2003	 and	 2004.	 It
corresponds	to	a	tiny	piece	of	sky	(approximately	1/30th	of	one	millionth	of	the
entire	sky),	and	still	it	contains	over	5500	visible	galaxies.	The	XDF	photograph
contains	a	wealth	of	information:	data	about	a	deep	slice	of	space	and	time.	It	is
a	record	of	the	light	that	fell	on	Hubble’s	mirror,	virtually	all	of	which	originated
from	galaxies	beyond	our	own.

Now	 we	 have	 the	 distance	 to	 nearby	 galaxies,	 using	 Leavitt’s	 distance–
luminosity	 relation	 for	 Cepheid	 variable	 stars,	 let’s	 do	 a	 quick	 back-of-the-
envelope	calculation	based	on	the	number	of	galaxies	visible	in	the	Hubble	XDF



image.	If	the	Hubble	XDF	is	typical	of	the	entire	sky–and	we	have	no	reason	to
think	otherwise–then	 there	are	approximately	30,000,000	×	5500	=	165	billion
galaxies	 in	 the	 observable	 Universe.	 If	 we	 further	 assume	 that	 the	 average
distance	between	galaxies	 is	 the	 same	as	 the	distance	between	 the	Milky	Way
and	Andromeda,	then	we	can	estimate	the	size	of	the	observable	Universe	to	be
(165	×	109)1/3	×	2.5	million	light	years	=	14	billion	light	years.	This	is	obviously
a	 very	 rough	 estimate,8	 but	 it	 is	 one	 that	 gives	 us	 a	 sense	 of	 the	 scale	 of	 the
Universe.

Since	 light	 takes	1	billion	years	 to	 travel	 1	billion	 light	 years,	 our	 estimate
implies	 that	 the	Universe	 is	 probably	 at	 least	 14	billion	years	old,	 because	 the
light	 from	 the	most	 distant	 galaxies	must	 have	 had	 sufficient	 time	 to	make	 it
across	the	Universe	and	onto	Hubble’s	mirror.	Simply	by	counting	stars	and	by
measuring	the	distance	to	Andromeda,	we	are	led	to	contemplate	a	Universe	that
is	old	enough	to	contain	the	Sun	and	Earth,	which	we	have	already	dated	to	over
4	billion	years	 in	age.	Obviously	 the	Universe	must	be	older	 than	 the	Sun	and
Earth,	 but	 it	 is	 nice	 to	 see	 how	 very	 simple	 reasoning	 leads	 to	 the	 correct
ordering	of	their	ages.

There	 are	 only	 a	 handful	 of	 measurable	 properties	 of	 the	 most	 distant
galaxies,	 because	 astronomers	 have	 only	 the	 light	 these	 galaxies	 emit	 to	work
with.	For	 a	 relatively	nearby	galaxy,	we	 can	determine	 its	 size	 if	we	know	 its
angular	size	on	the	sky	and	how	far	away	it	is	(which	we	can	do,	if	we’ve	been
able	to	find	a	Cepheid	variable	star	or	some	other	object	of	known	brightness).
For	the	more	distant	galaxies,	however,	resolving	individual	stars	is	not	possible.
This	means	that	the	Cepheid	method	will	not	be	any	use	for	galaxies	that	are	too
far	away.	For	these	we	need	another	new	trick.

There	are	certain	types	of	astronomical	events,	known	as	Type	1A	supernova,
that	are	very	bright	and	can	be	seen	at	very	large	distances.	To	say	they	are	very
bright	 is	something	of	an	understatement,	because	a	single	Type	1A	supernova
shines	brighter	 than	entire	galaxies	of	 stars,	 albeit	 for	 just	 a	 few	 fleeting	days.
This	type	of	supernova	occurs	when	a	star	gains	mass	by	consuming	matter	from
a	nearby	star.	Once	the	star	becomes	40%	more	massive	than	the	Sun	it	starts	to
collapse	in	on	itself	under	the	weight	of	its	own	gravity.9	The	fact	that	all	Type
1A	supernovae	happen	in	essentially	the	same	way	means	that	they	are	all	of	the
same	intrinsic	brightness.	Just	as	with	Cepheid	variables,	these	can	therefore	be
used	as	‘standard	candles’	to	determine	how	far	they	(and	their	host	galaxies)	are
away.	The	trouble	is	that	they	are	rare	events:	the	supernova	rate	in	an	average
galaxy	 is	 estimated	 to	 be	 around	 one	 per	 century,	 and	 the	 last	 Type	 1A



supernova	to	be	clearly	observed	in	the	Milky	Way	was	way	back	in	1604.	Many
more	 have	 been	 seen	 beyond	 the	 Milky	Way,	 which	 is	 why	 they	 are	 a	 very
valuable	tool	for	measuring	cosmic	distances.

There	are	other	ways	to	measure	the	distances	to	galaxies	that	do	not	rely	on
the	rare	good	fortune	of	observing	a	Type	1A	supernova.	We	will	meet	 two	of
these	in	Chapter	6,	and	use	them	to	help	us	do	some	cosmology.	Both	methods
exploit	the	fact	that	there	is	extra	information	encoded	in	the	light	from	a	galaxy,
beyond	the	size	and	shape	of	its	image	on	a	photograph.	There	is	also	colour:	not
just	the	reds,	blues	and	greens	visible	in	photographs,	but	the	precise,	fine	details
of	the	distribution	of	the	colours	in	the	spectrum.	This	might	not	seem	like	much,
but	it	is.

In	Box	7	(pp.	109–13),	we	give	a	brief	explanation	of	the	way	light	is	emitted
and	absorbed	by	atoms,	which	should	help	in	understanding	the	last	part	of	this
chapter.	For	 those	who	don’t	 fancy	reading	 the	Box,	 the	executive	summary	 is
that	 the	 light	 from	 any	 star	 or	 galaxy	 contains	 a	 characteristic	 barcode	which
tells	us	precisely	what	that	star	or	galaxy	is	made	of.	This	barcode	is	universal:
the	chemical	elements	that	make	up	the	stars	and	dust	in	the	Andromeda	galaxy
are	the	same	as	the	chemical	elements	that	make	up	your	body.	The	barcode	of
the	Sun’s	atmosphere,	taken	during	a	solar	eclipse,	is	shown	in	Figure	4.9.	This
spectrum	was	made	by	passing	sunlight	through	a	prism,	or	to	be	more	precise	a
high-precision	 kind	 of	 prism	 known	 as	 a	 diffraction	 grating.	 The	 peaks	 in	 the
spectrum	 signal	 the	 presence	 of	 different	 chemical	 elements	 in	 the	 Sun’s
atmosphere:	 hydrogen,	 helium,	 calcium,	 magnesium,	 iron	 and	 traces	 of	 other
elements	can	be	seen.	This	is	obviously	a	very	neat	way	to	ascertain	what	distant
stars	and	galaxies	are	made	of.



Figure	4.9	The	solar	emission	spectrum,	taken	during	the	time	of	a	solar

eclipse.	Notice	how	the	Sun	has	a	propensity	to	emit	light	of	very	specific

colours.	These	colours	indicate	which	atoms	are	present.



Figure	4.10	The	galaxy	NGC4535	at	a	redshift	of	0.00655.	This	image	was

taken	with	the	Hale	200-inch	optical	reflector	telescope	at	the	Palomar

Observatory	located	in	north	San	Diego	County,	California.

Now	let’s	look	at	a	galaxy.	We’ve	chosen	a	beautiful	one	called	NGC4535,	a
barred	spiral	galaxy	in	the	constellation	of	Virgo.	The	photograph	in	Figure	4.10
was	 taken	 using	 the	 200-inch	 Hale	 telescope	 at	 the	 Palomar	 Observatory	 in
California.	 The	 telescope	 was	 completed	 in	 1948,	 and	 remained	 the	 world’s
largest	until	1993.	If	you	know	a	little	about	photography	or	engineering,	you’ll
appreciate	what	a	 superb	 instrument	 this	 is	when	we	 tell	you	 that	 at	 the	prime
focus	 of	 the	 20	 square	metre	 mirror	 the	 focal	 length	 is	 16.76	metres	 with	 an
aperture	of	f3.3.	The	Hubble	Space	Telescope	has	also	observed	several	Cepheid



variable	 stars	 in	 NGC4535,	 and	 from	 these	 we	 know	 the	 distance	 to	 be	 52
million	light	years.

Just	as	for	the	Sun,	we	can	examine	the	spectrum	of	light	from	NGC4535.	A
portion	of	that	spectrum	is	shown	in	Figure	4.11,	where	we	can	see	five	strong
emission	 lines.	 The	 strongest	 is	 at	 a	 wavelength	 of	 6606	 ångstroms.	 Because
galaxies	are	expected	to	be	predominantly	hydrogen	gas,	we	might	suppose	that
this	 line	 is	 associated	with	 hydrogen	 atoms.	 Indeed,	 in	 earth-bound	 laboratory
measurements	 there	 is	an	emission	 line	close	 to	 this	wavelength,	called	 the	H-
alpha	line,	but	on	Earth	 the	wavelength	 is	6563	ångstroms.	This	 important	 line
can	also	be	seen	in	the	spectrum	in	Figure	4.13	of	Box	7.	The	Earth-bound	and
galactic	wavelengths	do	not	quite	agree.	Should	we	doubt	our	interpretation?	Is
the	bright	emission	line	from	NGC4535	coming	from	something	else?

To	help	understand	what	 is	going	on,	 let’s	 look	at	 the	 two	 lines	 that	 lie	on
either	side	of	the	proposed	galactic	H-alpha	line.	They	have	wavelengths	of	6591
and	6627	 ångstroms.	They	 are	 also	 close	 to	 two	 similar	 lines	 that	 are	 familiar
from	earth-based	experiments:	a	pair	of	emission	lines	from	nitrogen	known	as
the	NII	lines,	with	lab	wavelengths	of	6548	and	6584	ångstroms.	Now	we	have	a
clue:	 all	 of	 these	 three	 spectral	 lines	 have	wavelengths	 that	 are	 around	 0.65%
bigger	 than	 their	 earthly	 counterparts.	 This	 systematic	 shift	 of	 wavelengths	 is
confirmed	when	we	 study	 the	 two	 smaller	 lines	 at	 6760	 and	 6775	 ångstroms.
After	accounting	for	the	0.65%	shift,	these	correspond	to	two	Earth-bound	lines
known	as	 the	SII	 lines,	which	are	emitted	by	sulphur	atoms,	at	6716	and	6731
ångstroms.	 So,	 the	 spectrum	 from	 NGC4535	 looks	 exactly	 like	 a	 terrestrial
spectrum–except	 that	 all	 of	 the	wavelengths	 have	 been	 increased	 by	 the	 same
factor	of	0.65%.

We	could	conclude	 that	 there	 is	something	strange	about	galaxy	NGC4535.
Could	the	structure	of	atoms	be	different	there?	It’s	hard	to	see	why	or	how	this
could	be	the	case.	The	mystery	deepens	when	we	look	at	the	spectra	from	other
galaxies.	 The	 barcode	 patterns	 from	 all	 galactic	 spectra	 correspond	 precisely
with	 the	 barcode	 patterns	 of	 atoms	 detected	 on	 Earth,	 but	 they	 are	 always
shifted.	 Furthermore,	 they	 are	 all	 shifted	 by	 different	 amounts–but	 the
overwhelming	majority	 are	 shifted	 to	 higher	wavelengths,	 just	 like	NGC4535.
This	shift	to	higher	wavelengths	is	known	as	a	redshift.

Astronomers	 quantify	 the	 amount	 of	 redshift	 by	 the	 ratio	 of	 the	 shift	 in
wavelength	 divided	 by	 the	 wavelength	 of	 the	 spectral	 line	 as	 it	 would	 be
measured	 on	 Earth.	 This	 means	 that	 NGC4535	 has	 a	 redshift	 of	 0.0065.
Redshifts	 can	 be	 much	 larger	 than	 this,	 though.	 In	 Figure	 4.12	 we	 show	 the



spectrum	of	 light	 from	3C273,	a	 type	of	active	galaxy	known	as	a	quasar.	The
redshift	in	this	case	is	far	greater,	which	you	can	immediately	see	by	just	looking
at	 the	 plot.	 In	 this	 case,	 the	 bright	 H-alpha	 line	 is	 somewhere	 closer	 to	 7600
ångstroms	and	 the	 redshift	 is	0.1583.	This	 is	 confirmed	by	 the	other	 lines	 (we
can	see	several	other	hydrogen	emission	lines).	As	in	the	case	of	NGC4535,	we
see	a	barcode	pattern	just	like	on	Earth–but	this	time	with	a	15.8%	shift	to	higher
wavelengths.

Fig	4.11	The	emission	spectrum	of	NGC4535.	The	biggest	bump	is	due	to	the

presence	of	hydrogen	and	the	two	smaller	bumps	either	side	are	due	to

nitrogen.	The	two	bumps	on	the	far	right	identify	the	presence	of	sulphur.



Fig	4.12	The	emission	spectrum	of	3C273,	which	is	a	quasar	at	redshift	of

0.1583.	This	spectrum	was	obtained	using	the	Hubble	Space	Telescope.	The

arrows	indicate	the	extent	of	the	redshift.

There	 are	 two	 possible	 ways	 to	 explain	 redshift.	 One	 is	 that	 atoms	 are
different	 everywhere	 in	 the	Universe,	 and	virtually	 all	 of	 them	emit	 light	with
longer	 wavelengths	 than	 those	 in	 our	 galaxy.	 The	 other	 possibility	 is	 that
something	 happened	 to	 the	 light	 on	 its	 journey	 from	 the	 galaxies	 to	 our
telescopes	that	caused	the	wavelengths	to	increase.

It	is	one	of	the	most	remarkable	facts	in	the	history	of	science	that	physicists
were	 in	 possession	 of	 a	 theory	 that	 could	 explain	 the	 redshift	 of	 the	 galaxies
years	before	Hubble	had	even	confirmed	that	galaxies	existed,	and	years	before
any	 redshifts	 were	 observed.	 That	 theory	 is	 Einstein’s	 theory	 of	 General
Relativity,	which	many	physicists	regard	as	the	most	beautiful	physical	theory	of
them	all.

BOX	7.	WHAT	IS	LIGHT?



Figure	4.13	The	electromagnetic	spectrum.	The	shortest	wavelengths	are

known	as	gamma	rays,	and	the	longest	are	radio	waves.	Visible	light	has

wavelengths	between	approximately	400	and	700	nm.	Violet	and	blue

light	have	shorter	wavelengths,	and	orange	and	red	have	longer

wavelengths.

Light	can	be	thought	of	as	a	wave.	Like	a	water	wave	it	has	peaks
and	troughs.	But	unlike	water	waves,	where	we	can	see	 the	peaks
and	 troughs	 very	 clearly,	 the	 peaks	 and	 troughs	 in	 a	 light	 wave
correspond	 to	variations	 in	 the	size	of	electric	and	magnetic	 fields,
which	 is	 rather	more	 abstract.	We	do	 sometimes	 feel	 the	 effect	 of
these	variations	because,	if	the	wavelength	is	right,	the	electric	fields
push	 the	electrons	around	 in	our	eyes	 to	generate	 the	signals	 that
our	 brains	 turn	 into	 images.	 The	distance	between	 two	peaks	 in	 a
light	 wave	 is	 called	 the	 wavelength,	 and	 we	 interpret	 different
wavelengths	of	visible	light	as	different	colours.	We	are	able	to	see
light	with	wavelengths	between	around	400	nm	and	700	nm.	Beyond
our	visual	range,	past	the	short-wavelength	violet	light,	there	are	X-
rays	 and	 gamma	 rays.	 Beyond	 the	 longer-wavelength	 reds	 lie	 the
radio	waves.	The	electromagnetic	spectrum	is	summarized	in	Figure
4.13.

Light	is	emitted	by	atoms	when	they	are	heated	up,	and	absorbed
by	atoms	when	 it	shines	on	 them.	From	studies	here	on	Earth,	we
know	 that	 each	 kind	 of	 atom–each	 chemical	 element–emits	 or
absorbs	only	very	particular	wavelengths	of	light.	Each	element	has
a	distinct	signature,	which	is	ultimately	down	to	its	individual	atomic



structure.	 Figure	 4.14	 shows	 the	 spectrum	 of	 light	 emitted	 and
absorbed	 by	 hydrogen	 atoms.	 The	 absorption	 spectrum	 is	 like	 a
rainbow	with	pieces	missing,	and	it	is	made	in	much	the	same	way,
by	 shining	 white	 light	 through	 hydrogen	 gas	 and	 then	 through
something	 like	a	prism.	The	prism	acts	 like	 raindrops,	splitting	 light
into	its	component	colours	by	spreading	them	out.	The	dark	vertical
lines	across	 the	 rainbow	 in	 the	spectrum	shown	 in	Figure	4.14	are
known	as	 absorption	 lines,	 and	 they	 are	 produced	when	 light	 of	 a
particular	colour	 is	absorbed	by	 the	hydrogen	atoms.	The	emission
spectrum	is	produced	when	we	look	at	the	light	emitted	by	a	hot	gas
of	hydrogen.

The	 emission	 and	 absorption	 lines	 are	 at	 exactly	 the	 same
wavelengths	 because	 emission	 and	 absorption	 are	 a	 result	 of
electrons	 jumping	 around	 inside	 hydrogen	 atoms.	Quantum	 theory
explains	 why	 the	 electrons	 are	 only	 allowed	 to	 have	 specific
energies	 when	 they	 are	 confined	 inside	 atoms,	 and	 therefore	 why
the	emission	and	absorption	lines	are	discrete.	We	don’t	need	to	get
into	the	details	of	quantum	theory	here,	but	it	is	helpful	to	know	that
light	can	also	be	thought	of	as	a	stream	of	particles	called	photons,
and	that	every	time	an	electron	in	an	atom	loses	energy,	a	photon	is
emitted	 from	nowhere	with	energy	exactly	equal	 to	 that	 lost	by	 the
electron.	These	are	 the	photons	we	see	 in	 the	emission	spectrum.
Likewise,	an	electron	can	raise	its	energy	by	absorbing	a	photon	of



just	the	right	energy	(the	photon	then	disappears).	This	leads	to	the
absence	 of	 photons	 we	 observe	 in	 the	 absorption	 spectrum.	 The
energy	of	the	photons	is	inversely	proportional	to	the	wavelength	of
the	 light,	 which	 means	 that	 higher	 energy	 photons	 correspond	 to
shorter	wavelengths.

Figure	4.14	The	characteristic	fingerprint	of	hydrogen	atoms.

The	 pattern	 of	 emission	 and	 absorption	 lines	 is	 always	 very
distinctive:	 it	 resembles	 a	 DNA	 fingerprint	 or,	 as	 we’ve	 seen,	 a
barcode.	This	allows	us	to	analyse	the	light	captured	by	a	telescope
from	 a	 star	 or	 galaxy	 and	 identify	 which	 chemical	 elements	 are
present.	 Figure	 4.15	 shows	 the	 light	 from	 the	Sun,	 split	 up	 into	 its
component	 colours.	 The	 hundreds	 of	 black	 absorption	 lines
crisscrossing	the	rainbow	are	the	atomic	fingerprints,	and	this	is	how
we	 know	 precisely	what	 the	Sun	 is	made	 of,	 even	 though	 nobody
has	ever	been	there.

Good	 science	 is	 often	 about	 paying	 attention	 to	 the	 smallest,
seemingly	 insignificant	details	of	Nature,	and	there	 is	one	detail	we
can’t	 resist	 mentioning.	 Take	 a	 look	 again	 at	 Figure	 4.9,	 which
shows	 the	 emission	 spectrum	 of	 the	 outermost	 parts	 of	 the	 Sun
(called	 the	 chromosphere	 and	 corona)	 observed	 during	 a	 solar
eclipse.	 The	 eclipse	 helps	 us	 to	 observe	 an	 emission	 spectrum,
because	the	Moon	blocks	 the	background	 light	 from	the	rest	of	 the



Sun.	This	is	the	light	emitted	by	atoms	in	the	solar	atmosphere.	The
emission	 lines	 in	Figure	4.9	can	be	paired	with	 lines	of	exactly	 the
same	 wavelengths	 in	 the	 solar	 absorption	 spectrum,	 which	 we
showed	 in	 Figure	 4.15.	 This	 is	 to	 be	 expected.	 The	 absorption
spectrum,	 which	 is	 the	 thing	 we	 usually	 see,	 is	 created	 when	 the
white	 light	 from	 the	 surface	 of	 the	 Sun	 shines	 through	 the	 solar
atmosphere.	The	chemical	elements	 then	absorb	 light	according	 to
their	 characteristic	 colours,	 creating	 the	 barcode.	 As	 we	 have
already	noted,	if	the	atoms	are	present	to	absorb	light,	then	they	are
also	 present	 to	 emit	 it,	 but	 we	 don’t	 usually	 see	 the	 emission
spectrum	because	the	bright	glow	of	the	hot	surface	overwhelms	it.

Figure	4.15	The	solar	absorption	spectrum.	The	fingerprints	of	the	atoms

in	the	solar	atmosphere	are	clearly	visible,	and	the	most	prominent	ones

are	labelled.	The	English	chemist	William	Hyde	Wollaston,	brother	of	the

man	who	gave	John	Michell’s	apparatus	to	Henry	Cavendish,	was	the

first	person	to	note	the	appearance	of	these	dark	features	in	the	solar

spectrum,	in	1802.

However,	 if	 you	 look	 closely,	 you	 can	 see	 something	 odd.	 The



two	 lines	marked	He	5876	ångstroms	and	He	4472	ångstroms	are
not	 visible	 in	 the	 solar	 absorption	 spectrum.	 The	 former	 is	 the
second	most	 intense	line	 in	the	emission	spectrum,	which	means	it
must	be	abundant	 in	the	outer	portions	of	the	Sun.	These	lines	are
due	to	the	presence	of	the	element	helium.	Helium,	the	second	most
abundant	element	in	the	Universe,	was	not	discovered	on	Earth	but
by	 studying	 the	 emission	 spectrum	 from	 the	Sun.	During	 the	 solar
eclipse	 of	 1868,	 the	 English	 astronomer	 Joseph	 Norman	 Lockyer
saw	the	 two	bright	emission	 lines,	which	at	 that	 time	corresponded
to	 no	 known	 terrestrial	 element.	 Appropriately	 enough,	 the	 new
element	was	christened	after	Helios,	the	Greek	sun	god:	helium.

If,	as	we	now	know,	 the	Sun	 is	27%	helium	outside	of	 the	core,
why	 do	 we	 not	 see	 it	 in	 the	 much	 more	 visible	 solar	 absorption
spectrum?	The	 reason	 is	 this:	 the	Sun’s	surface	mainly	glows	at	a
relatively	cool	6000	degrees	celsius,	at	which	temperature	helium	is
transparent	to	visible	 light,	so,	even	though	there	are	helium	atoms
present,	 no	absorption	 line	 is	 seen.	 It	 is	one	of	 the	most	 intriguing
facets	of	our	star	the	Sun	that	its	outermost	atmosphere	is	far	hotter
than	 its	 surface,	 which	 is	 a	 result	 of	 the	 complex	 behaviour	 of	 its
magnetic	 field.	 The	 corona	 has	 a	 temperature	 of	 around	 3	million
degrees	 celsius,	 which	 is	 definitely	 hot	 enough	 to	 excite	 the
electrons	inside	helium	atoms	and	make	them	emit	light.	Unless	the
much	more	intense	light	coming	from	the	bulk	of	the	Sun	is	blocked
out	(as	 it	 is	 in	an	eclipse),	 these	emitted	photons	are	too	few	to	be
easily	 noticed.	 This	 is	 why	 helium	 is	 present	 in	 the	 emission
spectrum,	but	not	in	the	absorption	spectrum.



5.	EINSTEIN’S	THEORY	OF	GRAVITY

All	 things	 fall	with	 the	 same	 acceleration	 under	 the	 influence	 of	 gravity.	That
statement	is	pretty	well	known	and	it	doesn’t	sound	very	profound,	but	it	is.	In
terms	of	an	equation,	you	may	recall	that	the	acceleration	of	an	object	falling	to
the	ground	 is	given	by	a	=	GM/r2.	Here,	G	 is	 the	 strength	of	 the	gravitational
force	 so	 skillfully	 pinned	 down	 by	 Henry	 Cavendish	 in	 the	 late	 eighteenth
century,	r	is	the	distance	from	the	centre	of	the	Earth,	and	M	is	the	mass	of	the
Earth.	Nowhere	in	this	equation	is	the	mass	of	the	falling	object	present,	which	is
the	 reason	 for	 the	opening	 sentence	 to	 this	chapter.	Big,	heavy	 things,	 like	 the
Moon,	accelerate	to	the	Earth	at	the	same	rate	as	light	things,	like	a	mote	of	dust.
This	 is	 the	 famous	 result	 obtained	 by	 Galileo,	 which	 he	 is	 said–probably
apocryphally–to	have	demonstrated	by	dropping	two	balls	with	different	masses
from	the	Leaning	Tower	of	Pisa.	Newton	used	this	result	to	argue	that	the	force
of	gravity	must	be	proportional	 to	 the	mass	 that	appears	 in	his	Second	Law	of
Motion,	 F	 =	 ma,	 which	 states	 that	 if	 you	 apply	 a	 force	 to	 something,	 it
accelerates	by	an	amount	inversely	proportional	to	its	mass.	The	m	in	F	=	ma	is
known	 as	 the	 inertial	 mass,	 because	 it	 describes	 how	 hard	 it	 is	 to	 push
something.	It	is	because	of	the	precise	equivalence	between	gravitational	mass,
used	 in	 Newton’s	 Law	 of	 Gravitation,	 and	 inertial	 mass,	 used	 in	 Newton’s
Second	Law	of	Motion,	that	the	acceleration	due	to	gravity	is	independent	of	the
mass	of	the	falling	object.	As	we	shall	now	see,	the	equivalence	of	gravitational
and	inertial	mass	has	profound	consequences.

Newton	 had	 an	 answer	 to	 why	 these	 two	 conceptually	 different	 masses
happen	 to	be	equal:	 they	are	equal	because	 that	 is	 the	way	 things	are.	Nobody
did	 any	 better	 than	 that	 for	 over	 two	 centuries,	 until	 a	 young	Albert	 Einstein
realized	that,	as	he	put	it,	‘for	an	observer	freely	falling	from	the	roof	of	a	house,
at	 least	 in	 his	 immediate	 surroundings,	 there	 exists	 no	 gravitational	 field.’
Einstein	appreciated	 that	 freely	falling	objects	 feel	no	force,	which	means	 they
do	 not	 accelerate:	 this	 is	 why	 the	 paths	 they	 follow	 are	 independent	 of	 their
mass.	Looking	back	in	1920,	Einstein	described	this	as	‘the	happiest	thought	of
my	 life’.	 To	 understand	 precisely	why	 he	 said	 this–Einstein	was	 not	 prone	 to



exaggeration–you	 need	 to	 understand	 what	 follows	 in	 this	 chapter.	 An
unexpected	spin-off	of	this	happy	thought,	which	undoubtedly	surprised	Einstein
as	much	as	everyone	else,	was	the	prediction	that	there	may	well	have	been,	to
use	George	Lemaître’s	poetic	phrase,	a	day	without	a	yesterday.	In	other	words,
Einstein’s	theory	of	gravity	predicts	the	Big	Bang.

Let’s	think	carefully	about	free-fall.	Imagine	jumping	off	a	roof.	As	you	fall,
according	to	Einstein,	it	is	as	if	somebody	switches	gravity	off.	That	sounds	odd.
Hurtling	towards	the	ground,	it	would	be	a	brave	soul	who	dares	to	claim	there	is
no	gravity.

In	the	twenty-first	century,	we	don’t	have	to	imagine	this	situation,	because
we	 are	 all	 familiar	 with	 images	 of	 astronauts	 aboard	 the	 International	 Space
Station	(ISS).	From	the	perspective	of	an	observer	on	the	ground,	the	astronauts
are	 falling,	 together	with	 the	 space	 station	 and	 everything	 aboard,	 towards	 the
ground	due	 to	 the	gravitational	pull	of	 the	Earth.	The	astronauts	 are,	however,
floating.	 It	 is	 a	 common	 misconception	 to	 imagine	 that	 the	 astronauts	 are
floating	in	‘zero-G’	because	they	are	a	 long	way	from	Earth;	 they	are	not.	The
altitude	of	the	ISS	is	only	400	km,	and	the	radius	of	the	Earth	is	6370	km.	That
corresponds	to	a	10%	reduction	in	the	gravitational	pull	of	the	Earth	relative	to
that	felt	by	a	person	falling	from	a	roof	at	the	Earth’s	surface.	The	space	station
doesn’t	hit	the	ground	when	it	falls	because	it’s	also	travelling	tangentially	at	a
velocity	of	7.66	km/s,	which	means	that	it	is	continually	missing	the	ground.	It’s
precisely	the	same	for	the	Moon.	It	too	is	forever	falling	to	the	Earth	and	forever
missing,	as	Newton	well	knew.	This	is	what	being	in	orbit	means.	Watching	the
footage	of	the	astronauts,	it’s	obvious	that	gravity	at	least	appears	to	have	gone
away.	If	an	astronaut	lets	go	of	a	cup,	or	a	hammer,	or	even	a	globule	of	water,	it
stays	put.	A	water	globule	doesn’t	move	 relative	 to	 the	astronaut,	or	 the	 space
station,	or	fall	towards	the	Earth	faster	or	slower,	despite	the	fact	that	its	mass	is
relatively	tiny.	It	just	floats.	This	is	what	we	call	‘zero-G’–but	there	is,	according
to	Newton,	plenty	of	‘G’	present.

Einstein	 and	Newton	 describe	 this	 behaviour	 in	 completely	 different	ways.
Newton	 puts	 the	 equivalence	 between	 inertial	 and	 gravitational	 mass	 centre
stage,	 and	 this	 is	 his	 explanation	 for	 the	 fact	 that	 nothing	 moves	 relative	 to
anything	else	on	the	ISS.	Einstein	simply	asserts	that	nothing	moves	relative	to
anything	else	because	there	is	no	force	acting	on	anything.

Hopefully	 you	 can	 now	 see	 what	 Einstein	 is	 driving	 at.	 In	 a	 sense,	 the
astronauts	aboard	the	ISS	can’t	tell	whether	they	are	falling	towards	the	Earth	or
simply	floating,	far	away	from	any	gravitational	influence	in	interstellar	space.	If



we	 close	 off	 the	 option	 of	 looking	 outside,	 there	 is	 no	 experiment	 they	 can
perform	or	observation	they	can	make	that	will	inform	them	either	way.	In	which
case,	 asserts	Einstein,	 there	 really	 is	 no	 difference	 between	 the	 two	 situations.
People	 in	 free	 fall	 do	 not	 experience	 gravity	 because	 there	 isn’t	 any:	 ‘for	 an
observer	freely	falling…	at	least	in	his	immediate	surroundings,	there	exists	no
gravitational	field.’	If	we	describe	the	world	from	the	point	of	view	of	people	in
free-fall,	the	force	of	gravity	will	never	enter	into	things.

But	surely	something	more	needs	saying:	after	all,	gravity	really	does	exist.	If
you	jump	off	a	roof,	you	do	hit	the	ground.	Einstein	has	an	answer	to	this.	Yes,
the	distance	between	you	and	the	ground	decreases	to	zero	when	you	jump	off	a
roof,	but	 that	 is	because	the	ground	is	accelerating	up	to	meet	you.	Again,	you
may	 feel	 uncomfortable	with	 this	 statement,	 but	 you	have	 to	 admit	 that	 this	 is
what	being	on	the	ground	actually	feels	 like.	As	you	sit	reading	this	book,	you
are	being	not-so-gently	pressed	into	your	chair.	It	feels	the	same	as	when	you	are
pressed	back	into	the	seat	of	an	aircraft	when	you	accelerate	down	the	runway.
This	is	because	it	is	the	same,	according	to	Einstein.	Your	weight	isn’t	anything
to	do	with	the	force	of	gravity	as	Newton	understood	it.	Rather,	it’s	the	feeling
you	get	because	you	are	accelerating	upwards	as	a	result	of	the	force	exerted	on
you	by	 the	ground,	 to	meet	 the	poor	unsuspecting	sod	who’s	minding	his	own
business	floating	around	after	stepping	off	a	roof.

Surely	not,	you	may	say.	 Imagine	 two	people	falling	freely	at	 two	different
places	 on	 the	 Earth;	 perhaps	 one	 is	 above	 England	 and	 the	 other	 is	 above
Australia.	Following	Einstein,	 they	could	each	legitimately	claim	to	be	floating
freely	in	space	whilst	the	ground	is	rushing	up	towards	them.	The	ground	cannot
be	accelerating	towards	each	of	them	at	the	same	time,	you	might	say,	because
this	would	imply	the	Earth	is	getting	bigger.	But	that	logic	is	wrong.

Imagine	 two	small	balls,	 separated	by	some	distance,	 falling	 freely	 towards
the	Earth.	From	Newton’s	perspective,	each	ball	accelerates	 towards	 the	centre
of	the	Earth	because	the	force	of	gravity	acts	along	a	straight	line	drawn	between
the	centre	of	the	ball	and	the	centre	of	the	Earth.	This	means	that	the	two	balls
must	get	closer	together	as	they	fall,	because	they	each	fall	along	straight	lines
that	meet	at	the	centre	of	the	Earth.	If	the	balls	start	only	a	metre	apart,	and	fall
over	a	distance	of	only	a	few	metres,	this	is	a	tiny	effect.	But	imagine	separating
the	 balls	 by	 a	 few	 thousand	 kilometres,	 and	 dropping	 them	 from	 a	 similar
altitude.	They	will	close	in	on	each	other	by	an	appreciable	amount	as	they	fall,
as	illustrated	in	Figure	5.1.	The	most	extreme	example	would	be	to	separate	the
balls	so	widely	that	one	falls	over	England	and	the	other	over	Australia,	in	which



case	they	would	hurtle	towards	each	other.	Einstein’s	theory	must	be	capable	of
explaining	 this,	 and	of	course	 it	 can.	So	how	can	 two	balls	get	 closer	 together
when	 they	 are	 experiencing	 no	 force?	 The	 explanation	 is	 the	 key	 to
understanding	General	Relativity.

We’ve	met	 Newton’s	 Second	 Law,	F	 =	ma	 (the	 force	 acting	 on	 an	 object
equals	that	object’s	mass	times	its	acceleration),	but	not	his	first.	Newton’s	First
Law	 states	 that	 ‘every	 body	 remains	 in	 a	 state	 of	 rest	 or	 uniform	motion	 in	 a
straight	 line	unless	acted	upon	by	a	 force’.	We	have	 said	 that	our	 falling	balls
experience	 no	 force,	 because	 we’ve	 dispensed	 with	 gravity,	 and	 yet	 they	 get
closer	 to	 each	 other	 as	 they	 fall	 in	 the	 vicinity	 of	 the	Earth.	They	 are	moving
together	without	a	force.	This	seems	like	a	contradiction,	but	we’ve	chosen	our
words	 carefully.	 Here	 is	 an	 example	 of	 ‘moving	 together	 without	 a	 force’:
imagine	 two	 explorers	 standing	 a	 small	 distance	 apart	 on	 the	 equator,	 and
imagine	 they	 agree	 to	 journey	 due	 North,	 walking	 in	 perfect	 straight	 lines	 at
constant	speed.	There	are	no	net	forces	acting,	so	they	will	continue	to	move	in
perfect	straight	lines	in	accord	with	Newton’s	First	Law.	But	they	will	get	closer
together	and	bump	into	each	other	at	the	North	Pole.	They	move	closer	together
because	 straight	 lines	on	 the	 surface	of	 the	Earth	are	 lines	of	 longitude,	which
cross	 the	equator	at	 right	angles,	but	converge	on	each	other	 towards	 the	pole.
There	is	no	force	pulling	the	explorers	together;	they	get	closer	to	each	other	as
they	 move	 north	 because	 they	 are	 moving	 in	 straight	 lines	 across	 the	 curved
surface	of	the	Earth.	The	geometry	of	the	space	over	which	they	are	moving	is
not	flat,	and	because	of	this	they	are	drawn	closer	together	as	they	move.



Figure	5.1	Two	balls	falling	towards	the	Earth.

This	 is	 why	 the	 two	 balls	 dropped	 above	 England	 and	 Australia	 move
towards	 each	 other	 as	 determined	 by	 someone	 standing	 on	 the	 surface	 of	 the
Earth.	 They	move	 towards	 each	 other	 just	 as	 the	 two	 explorers	move	 towards
each	other	on	their	way	to	the	North	Pole.	Each	freely	falling	ball	(or	explorer)
can	‘claim’	quite	legitimately	that	the	other	is	accelerating	towards	them,	while
they	 feel	no	acceleration.	Now	we	can	understand	why	 it	 is	possible	 for	 freely
falling	observers	in	both	England	and	Australia	to	each	claim	that	the	ground	is
accelerating	up	 to	meet	 them,	and	yet	 the	Earth	 is	not	getting	any	bigger.	 It	 is
because	 acceleration	 is	 not	 universal.	 To	 be	 explicit,	 we	 can	 go	 back	 to	 the
example	 of	 our	 two	 explorers.	 Imagine	 they	walk	 along	 paths	 that	 pass	 either
side	of	Iceland.	According	to	each	explorer,	they	personally	are	not	accelerating,
because	they	are	moving	along	straight	lines,	but	Iceland	is	getting	closer	to	each



of	them	as	they	journey	past	it	on	their	way	to	the	pole.	Iceland,	they	each	claim,
must	be	accelerating	towards	them,	in	the	sense	that	it	is	moving	with	a	changing
speed	and	direction	relative	to	them.	Iceland	is	accelerating	from	the	perspective
of	both	explorers,	but	it	obviously	doesn’t	change	shape	in	reality.

According	to	Einstein,	Newton’s	force	of	gravity	is	as	fictitious	as	the	‘force’
pulling	those	two	explorers	together.	We	are	misled	into	suspecting	the	presence
of	an	attractive	force	that	causes	things	to	fall	when,	in	reality,	they	are	moving
in	 straight	 lines	 over	 a	 curved	 surface.	 But	what	 is	 the	 surface	 in	 the	 case	 of
objects	 falling	 in	 space?	 This	 is	where	 it	 becomes	 harder	 to	 visualize	what	 is
going	 on	 in	 our	 mind’s	 eye	 because	 the	 surface	 is	 not	 a	 surface	 of	 two
dimensions,	 like	 the	 surface	 of	 the	Earth.	 In	Einstein’s	 theory,	 the	 ‘surface’	 is
both	space	and	time.	The	mathematically	simple	but	intuitively	tricky	idea	of	a
surface	in	more	than	two	dimensions	is	explored	in	Box	8	(p.	123).

BOX	8.	HIGHER	DIMENSIONAL	SPACE

Figure	5.2	The	shadow	of	a	tesseract.

When	we	speak	of	spacetime	as	a	‘surface’,	we	are	using	the	word



in	 a	mathematical	 sense,	 in	 order	 to	make	a	parallel	with	 the	 two-
dimensional	example	of	the	Earth’s	surface	apparent.	But	spacetime
is	 four-dimensional.	 It	 has	 three	dimensions	of	 space	plus	 the	one
dimension	of	 time.	Do	not	get	alarmed	by	 the	 fact	 that	 the	surface
we	 are	 speaking	 of	 is	 four-dimensional	 and	 that	 one	 of	 those
dimensions	 is	 time.	 You	 will	 certainly	 not	 be	 able	 to	 picture	 this;
nobody	 can.	 Fortunately,	 Nature	 is	 not	 restricted	 to	 things	 that
human	 beings	 can	 picture:	 Nature	 is	 richer	 than	 that.	 And,	 also
fortunately,	 human	 beings	 have	 discovered	 mathematics,	 which
allows	them	to	deduce	things	that	they	cannot	picture.

In	 mathematics,	 if	 we’re	 allowed	 a	 2-dimensional	 surface,	 then
we’re	also	allowed	a	3,	4,	5	or	n-dimensional	surface.	All	we	need	to
do	 is	 add	 more	 numbers	 in	 order	 to	 specify	 the	 co-ordinates	 of
points	that	lie	on	the	surface;	we	also	need	to	specify	some	way	of
calculating	distances	on	the	surface.	You	can	picture	the	surface	of
a	 ball	 without	 any	 problem,	 but	 in	 an	 imaginary	 flat-world,	 where
there	 is	 no	 ‘up’	 and	 ‘down’,	 the	 inhabitants	 would	 really	 struggle.
They	 could	 still	 do	 mathematics	 concerning	 the	 surfaces	 of	 balls,
though.	 They	 might	 speak	 of	 a	 ball	 as	 the	 mysterious	 two-
dimensional	surface	 that	generalizes	 the	one-dimensional	notion	of
a	circle	(a	circle	is	something	they	would	be	able	to	picture).	Figure
5.2	shows	a	picture	of	a	 four-dimensional	cube–well	not	quite.	 It	 is
the	 shadow	 cast	 in	 three	 dimensions	 by	 a	 four-dimensional	 cube,
drawn	in	projection	in	two	dimensions	(i.e.	on	a	sheet	of	paper).	As
you	can	see,	we’re	able	to	get	a	glimpse	of	what	higher	dimensional
objects	 look	 like	 by	 looking	 at	 the	 shadow	 they	 cast	 in	 the	 lower
dimensions,	 just	 as	 your	 shadow	 would	 be	 something	 that	 a	 flat-
world	inhabitant	could	visualize.

Let’s	summarize	what	we	have	so	far,	because	this	 is	counter-intuitive.	Just
as	 people	 walking	 due	 north	 walk	 ‘over	 the	 Earth’	 and	 get	 drawn	 together
‘because	it	 is	curved’,	so	two	balls	in	free-fall	move	‘over	space	and	time’	and
get	drawn	together	‘because	it	is	curved’.	The	‘it’	we	refer	to	is	a	‘surface’	made
from	space	and	time,	a.k.a.	spacetime.	The	force	of	gravity	is	a	fictitious	force;	it
is	a	manifestation	of	the	fact	that	spacetime	is	curved.

The	 word	 ‘genius’	 is	 certainly	 overused	 and,	 in	 science,	 it	 gives	 the



impression	that	progress	is	the	result	of	a	series	of	eureka	moments	experienced
by	 a	 handful	 of	 intellectual	 freaks.	 This	 is	 not	 usually	 the	 case.	 Science	 is	 a
collective	endeavour.	Having	said	that,	if	it	ever	was	appropriate	to	use	the	word,
then	Einstein’s	development	of	General	Relativity	must	qualify.	It	took	Einstein
a	great	deal	of	time	and	effort	to	arrive	at	his	explanation	for	the	force	of	gravity.
He	had	the	idea	that	there	are	no	forces	acting	on	an	object	in	free-fall	sometime
in	late	1907;	it	was	late	1915	when,	having	worked	out	the	consequences	for	a
new	theory	of	gravity,	he	published	them	as	his	General	Theory	of	Relativity.

The	beauty	of	Einstein’s	General	Theory	of	Relativity	 is	 in	 part	 due	 to	 the
simplicity	of	its	core	idea:	that	objects	move	over	a	curved	spacetime	in	straight
lines.	The	 curvature	 of	 spacetime	 does	 all	 the	work	 of	what	 used	 to	 be	 called
‘force’.	In	this	way,	the	Earth	and	the	Moon	are	bound	together	in	orbit,	and	yet
both	 travel	 in	 perfect	 straight	 lines	 over	 spacetime.	 It	 is	 so	 brilliant	 and
enchanting	an	idea	that	many	modern	theoretical	physicists	hope	that	all	of	 the
forces	of	Nature	can	be	dispensed	with	and	replaced	by	geometry,	using	General
Relativity	as	the	template.

The	 part	 of	 General	 Relativity	 that	 tells	 us	 how	 things	 move	 over	 curved
spacetime	is	only	one	piece	of	the	theory.	The	other,	very	necessary,	part	tells	us
how	spacetime	becomes	curved	 in	 the	 first	place.	Obviously,	 in	 the	case	of	an
object	falling	near	the	Earth,	it	must	be	that	the	Earth	is	responsible	for	warping
the	 spacetime	 around	 it.	 More	 precisely,	 and	 more	 generally,	 the	 presence	 of
matter	and	energy	curves	spacetime.	 It	 is	pretty	obvious	 that	 this	has	 to	be	 the
case,	because	gravity	is	something	we	naturally	associate	with	planets	and	stars,
and	 bigger	 things	 exert	 more	 gravitational	 pull	 than	 little	 ones	 (think	 of
astronauts	leaping	on	the	Moon).	General	Relativity	contains	a	set	of	equations
known	as	 the	Einstein	Field	Equations,	which	provide	 the	mathematical	means
to	determine	the	shape	of	spacetime	if	we	know	the	way	that	matter	and	energy
are	spread	about.	Here	they	are:1

Einstein’s	 equations	may	 look	 foreboding–but,	 like	many	of	 the	equations	 that
describe	 how	 Nature	 behaves,	 they	 tell	 us	 stories.	 The	 term	 Tµv	 on	 the	 right
contains	the	details	of	the	matter	and	energy	distribution	in	space	and	time.	If	we
wanted	 to	 use	 Einstein’s	 equations	 to	 describe	 the	 solar	 system,	 we’d	 put	 a



spherical	blob	in	here	with	the	mass	of	 the	Sun.	The	terms	on	the	left	describe
the	 resulting	 geometry	 of	 spacetime,	 which	 tells	 planets	 how	 to	 move	 in	 the
vicinity	 of	 the	 Sun.	 As	 an	 aside,	 the	 symbol	Λ	 is	 known	 as	 the	 cosmological
constant,	and	we’ll	meet	it	later	on.	You	will	recognize	at	least	one	symbol:	G,
Newton’s	 gravitational	 constant,	 which	 describes	 the	 strength	 of	 gravity.	 In
Einstein’s	 equations,	 it	 tells	 us	 how	 much	 spacetime	 curves	 in	 response	 to	 a
given	distribution	of	matter	and	energy.

We	can	use	Einstein’s	equations	to	compute	the	warping	of	spacetime	close
to	 the	 Earth’s	 surface.	 This	 gives	 results	 that	 are	 almost	 identical	 to	 those
predicted	by	Newton.	We	say	‘almost’,	because	there	are	some	differences.	For
example,	Einstein’s	equations	predict	that	time	passes	more	quickly	at	the	top	of
a	mountain	than	at	the	bottom;	remember,	both	space	and	time	are	warped	by	the
presence	 of	 the	 Earth,	 and	 not	 just	 space.	 This	 effect	 is	 so	 tiny	 that	 it	 would
probably	have	remained	undetected	until	the	twenty-first	century	had	people	not
bothered	 to	 look	 for	 it,	 but	 it	 is	 a	 large	 enough	 effect	 that,	 today,	 it	 must	 be
accounted	for	in	technology	that	requires	high-precision	timing,	such	as	the	GPS
system.

Things	 get	 more	 dramatic	 when	 we	 look	 beyond	 the	 Earth.	 Soon	 after
Einstein	published	his	theory	in	1915,	two	of	his	predictions	that	differed	from
Newton’s	were	 tested.	One	 concerned	 the	 orbit	 of	Mercury,	which	 is	 not	well
described	 by	 Newton’s	 laws	 and	 had	 been	 a	 known	 problem	 for	 almost	 two
centuries.	 Einstein’s	 theory,	 it	 turned	 out,	 correctly	 predicted	 the	 observed
motion	of	Mercury.	The	other	was	Einstein’s	prediction	for	the	amount	by	which
light	is	deflected	in	a	gravitational	field,	which	differed	from	naïve	Newtonian-
inspired	 predictions	 by	 perhaps	 the	most	 famous	 factor	 of	 2	 in	 all	 of	 physics.
Einstein’s	result	was	confirmed	during	the	solar	eclipse	of	1919,	when	starlight
could	be	observed	passing	close	to	the	Sun,	and	this	was	the	moment	he	became
world-famous.	Today,	Einstein’s	theory	has	been	tested	to	remarkable	precision
in	a	variety	of	astrophysical	systems,	systems	often	bizarre	and	violent	beyond
imagination.



Figure	5.3	A	simulation	of	a	pair	of	colliding	black	holes,	like	the	ones	that

produced	the	gravitational	waves	observed	by	the	two	LIGO	detectors.

The	 most	 spectacular	 recent	 triumph	 was	 the	 discovery	 of	 gravitational
waves:	 ripples	 in	 the	 fabric	of	 spacetime.	At	5.51	 a.m.	EST,	on	14	September
2015,	the	twin	LIGO	detectors,	located	in	the	United	States	in	Washington	State
and	 Louisiana,	 detected	 gravitational	waves	 as	 they	 passed	 through	 the	 Earth.
These	waves	were	caused	by	the	collision	of	two	black	holes,	themselves	also	a
prediction	of	Einstein’s	theory.	The	black	holes,	29	and	36	times	the	mass	of	the
Sun,	spiralled	into	each	other	in	less	than	two	tenths	of	a	second,	during	which
time	their	closing	speed	changed	from	one	third	to	almost	two	thirds	of	the	speed
of	 light.	 The	 collision	 resulted	 in	 a	 peak	 power	 output	 fifty	 times	 that	 of	 the



entire	 observable	 Universe,	 which	 distorted	 space	 and	 time	 enough	 for	 the
effects	 to	be	measured	1.3	billion	 light	years	 away	on	Earth.	Einstein’s	 theory
predicted	with	precision	the	observed	signal.	What	more	could	you	ask	for?

So	 there	 we	 have	 it:	 Einstein’s	 theory	 of	 gravity,	 General	 Relativity.	 It
supersedes	 Newton’s	 Law	 of	 Gravitation	 because	 it	 delivers	 a	 more	 accurate
description	of	Nature.	That	is	not	to	deny	that	Newton’s	law	remains	excellent	in
many	 instances,	 and	 has	 the	 advantage	 of	 being	 far	 easier	 to	 deal	 with
mathematically.	But	the	hard	evidence	indicates,	without	a	shadow	of	doubt,	that
Einstein’s	theory	is	more	correct	than	Newton’s.

We	can	now	be	a	little	more	ambitious.	We’ve	seen	that	Einstein’s	theory	is
extremely	good	at	describing	the	curvature	of	spacetime	around	spherical	blobs
of	 matter,	 like	 planets,	 suns	 and	 even	 black	 holes.	 We	 might	 therefore	 be
tempted	to	ask	whether	it	could	also	be	applied	to	a	larger	distribution	of	matter:
the	 entire	 Universe,	 for	 instance.	 This	 is	 audacious	 to	 say	 the	 least–and,
naturally,	 the	 thought	had	already	occurred	 to	Einstein.	 In	1917	he	published	a
paper	 entitled	 ‘Cosmological	 Considerations	 of	 the	 General	 Theory	 of
Relativity’,	 the	 audacity	 of	 which	 did	 not	 escape	 him.	 ‘I	 have…	 again
perpetrated	something	about	gravitation	theory	which	somewhat	exposes	me	to
the	danger	of	being	confined	 in	a	madhouse,’	he	wrote	 in	a	 letter	 to	his	 friend
Paul	 Ehrenfest.	 Let	 us,	with	 due	 humility,	 follow	 in	Einstein’s	 footsteps.	 This
will	 be	 well	 worth	 it,	 because	 what	 follows	 is	 a	 triumph.	 Einstein’s	 theory
predicts	the	existence	of	the	redshifts	of	the	galaxies	that	we	encountered	in	the
last	chapter.	And	that	is	because	it	also	predicts	the	existence	of	the	Big	Bang.

BOX	9.	GRAVITATIONAL	WAVES



Figure	5.4	The	two	LIGO	detectors.	At	the	top	is	the	detector	at	Hanford,

Washington	State,	and	below	is	the	detector	at	Livingston,	Louisiana.

The	science	is	carried	out	by	a	collaboration	of	hundreds	of	people	from

countries	across	the	world.

Until	 the	 LIGO	 detection	 of	 gravitational	 waves,	 astronomers	were
limited	to	using	electromagnetic	waves	to	observe	the	cosmos–now
they	 have	 a	 whole	 new	 way	 of	 seeing.	 The	 LIGO	 detectors	 are
staggering	 in	 their	 sensitivity	 and	 they	 are	 the	 modern	 day
equivalent	 of	 Henry	Cavendish’s	 experiment	 (see	 pp.	 68–72).	 The



two	LIGO	detectors	are	shown	in	Figure	5.4	and	they	each	consist	of
two	 4	 km	 long	 high-vacuum	 ‘arms’	 with	 heavy	 mirrors	 hanging	 at
either	end.	The	mirrors	are	suspended	 like	pendula	on	 fused	silica
fibres.	You	can	see	the	long	arms	on	the	photos.	As	a	gravitational
wave	passes,	 it	 pushes	 and	 pulls	 the	mirrors	 so	 as	 to	 change	 the
distance	between	them,	and	the	scientists	are	able	 to	measure	 the
change	in	length	of	one	arm	with	respect	to	the	other	(by	arranging
the	arms	at	 right-angles	one	arm	 tends	 to	 increase	 in	 length	when
the	 other	 decreases).	 They	 do	 this	 using	 a	 technique	 called	 laser
interferometry,	 which	 involves	 sending	 laser	 light	 into	 each	 arm,
where	it	bounces	back	and	forth	many	times	off	the	hanging	mirrors
before	 re-emerging.	 The	 strength	 of	 the	 combined	 output	 light	 is
sensitive	 to	 variations	 in	 the	 roundtrip	 time	 for	 the	 light	 to	 travel
along	each	arm–so	if	the	lengths	change	then	the	output	laser	light
will	reflect	that	change.

Figure	 5.5	 shows	 the	 amount	 by	 which	 the	 difference	 in	 length
between	 the	 two	 arms	 of	 the	 detector	 changed	 as	 the	 wave	 of
September	 2015	 passed	 by.	 This	 is	 labelled	 ‘strain’,	 and	 it	 is	 the
fractional	amount	by	which	the	arms	changed	in	length.	Notice	how
miniscule	 the	 strain	 is.	 It	 means	 that	 the	 scientists	 were	 able	 to
measure	 the	 change	 in	 length	 to	 better	 than	 1	 part	 in	 1021.	 That
relative	precision	is	 like	measuring	the	distance	to	our	nearest	star,
Proxima	 Centauri,	 to	 the	 thickness	 of	 a	 human	 hair:	 it	 is	 mind-
blowingly	 precise.	 In	 terms	 of	 absolute	 distance,	 it	 corresponds	 to
measuring	the	change	in	distance	between	the	mirrors	to	about	one
thousandth	of	the	size	of	a	single	proton.	You	might	well	doubt	that
such	 a	 precision	 is	 possible,	 not	 least	 because	 the	 surface	 of	 the
mirrors	 has	 variations	 that	 are	 much	 bigger	 than	 that.	 But	 the
brilliance	 of	 the	 measurement	 sidesteps	 the	 problem	 because	 it
measures	 an	 average	 distance.	 Each	 photon	 that	 enters	 the
apparatus	 is,	 in	a	sense,	making	 its	own	measurement,	and	one	of
LIGO’s	 key	 features	 is	 its	 ability	 to	 harness	 the	 power	 of	 vast
numbers	of	photons.	To	understand	how	powerful	this	averaging	is,
imagine	 a	 totally	 fictitious	 wave	 that	 has	 the	 effect	 of	 making
everyone	 on	 Earth	 increase	 in	 height	 by	 one	 hundredth	 of	 a
millimetre.	 If	you	knew	when	the	wave	was	due	 to	pass,	could	you



detect	 it?	Well,	 you	 certainly	 couldn’t	 tell	with	any	 confidence	 from
measuring	 the	 height	 of	 any	 one	 person	 before	 and	 after	 the
supposed	passing	of	the	wave,	because	you	simply	wouldn’t	be	able
to	measure	their	height	accurately	enough.	But	you	could	do	it	if	you
measured	 the	 difference	 in	 height	 (before	 and	 after	 the	 wave
passes)	of	everyone	and	 then	 took	 the	mean.	That	 is	because	 the
uncertainty	 on	 the	 mean	 decreases	 as	 the	 number	 of	 people
increases1	and	so,	with	enough	people,	you	could	spot	whether	or
not	 their	 average	 height	 has	 increased	 slightly	 after	 the	wave	was
due.	 This	 is	 similar	 to	 what	 is	 done	 to	 measure	 that	 minuscule
change	 in	 the	 arm	 lengths	 in	 LIGO.	 The	 main	 limitations	 on	 the
precision	of	the	experiment	are	due	to	the	limited	number	of	photons
they	have	at	their	disposal	and	to	the	small	vibrations	induced	in	the
hanging	mirrors	 due	 to	 seismic	 effects	 and	 the	 fact	 that	 a	 laser	 is
bouncing	off	them.	Passing	trains,	ocean	waves	and	the	weather	all
induce	relatively	 large	variations	but	 they	can	all	be	eliminated	to	a
sufficient	degree	with	diligence	and	attention	to	detail.	This	is	brilliant
science	straight	out	of	the	Henry	Cavendish	school.



Figure	5.5	The	all-important	graphs	demonstrating	the	discovery	of

gravitational	waves.	The	two	left-hand	graphs	show	the	measurement

from	Hanford	and	the	corresponding	theoretical	prediction.	The	right-

hand	graphs	are	the	same	but	for	the	detector	at	Livingston.

Figure	5.5	not	only	shows	how	the	strain	changed	with	time	over
the	fraction	of	a	second	when	the	wave	was	passing,	 it	also	shows
the	 theoretical	 prediction	 of	 what	 the	 signal	 ought	 to	 look	 like	 if	 it
came	from	a	pair	of	colliding	black	holes.	 It	 is	wonderful	 to	see	the
extent	of	the	agreement.	The	speeding	up	of	the	wiggles	reflects	the
speeding	up	of	the	black	holes	as	they	spiralled	towards	each	other,
and	 the	 final	 part	 of	 the	 curve,	 when	 the	 wiggles	 eventually	 die
away,	 corresponds	 to	 the	 final	 phase	of	 the	merger,	when	 the	 two
black	holes	have	become	one.

A	very	exciting	postscript	to	the	story	is	that	on	15	June	2016	the
LIGO	 team	announced	 their	 second	detection	of	 a	pair	 of	 colliding
black	holes.	The	event	occurred	on	Boxing	Day	2015	and	 involved
smaller	black	holes	(8	and	14	times	the	mass	of	the	Sun).	Again,	the
observed	 signal	 agrees	 perfectly	 with	 the	 calculations	 based	 on
Einstein’s	theory.	A	second	observation	so	soon	after	the	first	is	very
encouraging	 because	 it	 means	 that	 it	 is	 likely	 there	 will	 be	 much
more	 to	 see	 in	 the	 years	 to	 come,	 and	 that	 we	 are	 seeing	 these
events	 for	 the	 first	 time	 now	 because	we	 have	 finally	managed	 to
develop	the	technology	to	do	so.	This	surely	heralds	a	new	dawn	in
astronomy.

If	we	knew	all	about	the	distribution	of	matter	and	energy	in	the	Universe,	we
could	put	that	information	into	Einstein’s	equations	and	obtain	the	geometry	of
spacetime.	We	could	 then	ask	 if	 there	are	any	observable	consequences	of	 this
geometry,	and	look	to	test	the	theory.	This	is	what	we	will	now	do.

There	 is,	 of	 course,	 no	 way	 we	 can	 know	 where	 all	 the	 material	 in	 the
Universe	is	located.	It	is	hard	enough	to	keep	track	of	a	pair	of	socks.	We	are	not
stymied	though.	What	follows	is	an	example	of	good	science.	We	are	going	to
make	a	simplifying	assumption.	As	ever,	if	our	assumption	is	wrong,	we	expect
to	find	out	when	we	compare	our	predictions	with	experiments	or	observations
of	Nature.



Figure	 5.6	 shows	 a	map	 of	 the	 galaxies	 visible	 from	Earth,	 compiled	 from
several	 databases	 by	 Thomas	 Jarrett,	 an	 astronomer	 at	 Caltech.	 It’s	 worth
looking	 for	 a	moment	 at	 this	 picture,	 because	 it	 is	 remarkable	 and	 humbling.
There	are	so	many	galaxies	that	for	the	most	part	only	clusters	and	superclusters
of	 galaxies	 are	 labelled.	 The	Virgo	Cluster	 alone	 contains	 over	 1300	 galaxies
that	 lie	 around	 53	 million	 light	 years	 from	 Earth.	 A	 deep	 photograph	 of	 the
cluster	from	the	European	Southern	Observatory	in	Chile	is	shown	in	Figure	5.7,
revealing	 a	 snowstorm	 of	 galaxies:	 delicate	 clouds	 of	 light	 from	 billions	 of
worlds.

The	sky	is	filled	with	galaxies,	scattered	in	what	looks	like	a	random	pattern.
They	appear	uniformly	distributed	on	the	largest	distance	scales,	and	this	is	the
clue	we	need	 to	make	our	 assumption.	We	will	 suppose	 that	 the	matter	 in	 the
Universe	is	scattered	evenly.	This	is	of	course	not	true	over	small	distances:	the
solar	system	is	very	lumpy,	with	all	the	mass	being	concentrated	in	the	Sun	and	a
few	planets.	But	we	are	going	to	assume	that	over	‘sufficiently	large’	distances,
the	Universe	 is	 smooth.	 In	other	words,	 if	we	 imagine	counting	 the	number	of
galaxies	 inside	 an	 imaginary	 box,	 sufficiently	 large	 so	 as	 to	 contain	 many
galaxies,	then	that	number	will	not	vary	much	if	we	choose	another	equally	sized
box	somewhere	else	in	the	Universe.

In	 the	 jargon,	 this	 is	called	a	homogenous	and	 isotropic	matter	distribution:
the	same	everywhere	and	the	same	in	every	direction.	It’s	the	ultimate	statement
of	the	Copernican	principle.	We	do	not	occupy	a	special	place	in	the	Universe,
and	neither	does	anyone	else.



Figure	5.6	An	all-sky	view	of	the	observable	Universe	from	the	XSC	catalogue

of	1.5	million	galaxies	and	the	PSC	catalogue	of	0.5	billion	stars	in	the	Milky

Way,	which	can	be	seen	across	the	centre	of	the	map.	The	galaxies	are

colour-coded	by	their	redshifts.



Figure	5.7	A	deep	image	of	the	Virgo	Cluster	taken	by	the	European	Southern

Observatory.	The	dark	spots	are	not	interesting–they	are	due	to	the	removal

of	bright	foreground	stars	from	the	image.

If	we	want	 to	calculate	 the	shape	of	all	of	spacetime,	we	know	what	 to	do.
We	plug	our	homogenous	and	isotropic	matter	distribution	into	the	right	side	of
Einstein’s	field	equations,	and	see	what	comes	out	on	the	left	side.	Fortunately,
we	 can	 immediately	 anticipate	 some	 of	 the	 results	without	 actually	 doing	 any
mathematics.

A	 perfectly	 smooth	 matter	 distribution	 throughout	 the	 Universe	 leads	 to	 a
perfectly	smooth	spacetime.	Galaxies,	stars	and	planets	will	cause	the	spacetime
in	their	vicinity	to	be	distorted	compared	to	the	perfectly	smooth	average.	Think
of	 it	 like	 a	 golf	 ball,	which	we	 can	 picture	 as	 a	 perfectly	 smooth	 sphere	with
small	 dimples	 that	 constitute	 local,	 small	 distortions	 on	 the	 surface.	 The	 local
dimpling	of	the	golf	ball	is	analogous	to	the	way	spacetime	is	‘dimpled’	by	local
clustering	 of	 mass.	 The	 Sun	 will	 make	 a	 tiny	 dimple.	 A	 galaxy	 will	 make	 a
bigger	one.	When	we	want	to	consider	the	large-scale	structure	of	the	Universe,



we	are	not	interested	in	the	dimples.	We	are	interested	in	the	smooth	spacetime
that	represents	the	Universe	at	large.2

We	 can	 now	 think	 about	 what	 a	 ‘perfectly	 smooth	 spacetime’	 might	 look
like.	It	turns	out	that	there	are	only	three	possibilities,	which	we	shall	refer	to	as
‘flat’,	 ‘spherical’	 and	 ‘hyperbolic’	 (you	need	 to	know	some	mathematics	 to	be
able	 to	prove	that	 there	are	no	more	possibilities).	Remember	 that	spacetime	is
four-dimensional,	 with	 three	 spatial	 dimensions,	 so	 we	 can’t	 picture	 it	 very
easily.	 Fortunately,	 the	 same	 three	 possibilities	 also	 arise	 in	 two	 spatial
dimensions,	and	they	are	sketched	in	Figure	5.8.	We	made	the	initial	assumption
that	 there	are	no	 special	places	and	no	 special	directions	 in	 the	Universe.	This
must	imply	that	the	shapes	of	spacetime	we	get	out	of	Einstein’s	equations	have
no	 special	 places	 and	 no	 special	 directions.	 It	 is	 easy	 to	 see	 that	 there	 are	 no
special	points	or	directions	on	a	flat	sheet.	Likewise,	there	are	no	special	points
or	 directions	 on	 the	 surface	 of	 a	 sphere,	 the	 second	 of	 the	 three	 possible
geometries.	 The	 third	 and	 final	 possibility	 is	 a	 saddle,	which	 is	 rather	 like	 an
inside-out	 sphere.	 The	 curvature	 of	 the	 surface	 is	 the	 same	 everywhere,	 but
instead	of	being	convex	like	a	sphere,	it	is	concave.	The	three	possibilities	in	the
four	 dimensions	 of	 spacetime	 are	 analogous	 to	 these,	 and	 the	 analogy	 is	 good
enough	for	us	to	dare	to	draw	some	galaxies	on	the	surfaces	in	the	figure.	These
are	 the	 three	 possible	 universes	 under	 the	 assumptions	 of	 homogeneity	 and
isotropy,	 and	 it	 is	 correct	 to	 think	of	 them	as	 showing	how	 space	 is	 curved	 at
some	instant	of	time.

It	is	impressive	that	we	can	make	statements	about	the	possible	geometries	of
spacetime	using	such	general	 reasoning,	but	we	can	go	further.	Look	at	Figure
5.9,	which	shows	a	hypothetical	flat	universe	at	three	different	times	(we	could
equally	well	have	chosen	one	of	the	other	two	geometries).	The	figure	indicates
that	our	model	universe	 is	being	evenly	stretched	as	 time	advances–just	as	one
might	 stretch	 a	 rubber	 sheet	 by	 pulling	 its	 edges	 equally	 in	 all	 directions.
Crucially,	 if	 the	 space	 is	 to	 remain	 flat,	 spherical	 or	 hyperbolic,	 then	 the	 only
conceivable	thing	it	can	do	as	time	advances	is	to	shrink	or	expand.	At	this	point
in	our	narrative,	we	have	no	idea	whether	the	space	we	live	in	expands,	contracts
or	 stays	 the	 same.	Remember,	Einstein	has	encouraged	us	 to	 think	of	 space	as
something	malleable:	the	presence	of	matter	and	energy	can	and	does	distort	it.
This	is	the	origin	of	planetary	orbits	and	the	reason	things	hit	the	ground	when
they	are	dropped.	The	idea	that	it	can	stretch	as	well	as	warp,	in	response	to	the
matter	and	energy	within	it,	should	not	be	so	bizarre.



Figure	5.8	The	three	possible	geometries	in	2D,	with	some	galaxies	drawn	on.



Figure	5.9	The	flat	universe	from	the	previous	figure	at	three	different	degrees

of	stretching.



Now	is	the	time	to	ask	what	the	full	machinery	of	General	Relativity	has	to	say.
We	would	like	to	know	exactly	how	the	Universe	stretches	or	shrinks	with	time.
Once	we	know	that,	we	know	everything	about	how	space	evolves	in	a	perfectly
uniform	 universe.	 Other	 questions	 we	 might	 have	 will	 be	 concerned	 with
deviations	 from	 the	 ‘same	 everywhere’	 assumption;	 we’ll	 come	 to	 that	 in
Chapter	8.

Imagine	two	points	in	the	Universe	that	are	a	certain	distance	apart	at	some
instant	 in	 time.	 Einstein’s	 equations	 tell	 us	 how	 that	 distance	 changes	 as	 time
advances.	 In	 other	 words,	 they	 tell	 us	 how	 the	 Universe	 is	 stretching	 or
shrinking.	Not	 surprisingly,	 the	detailed	answer	depends	on	which	of	 the	 three
geometries	 we	 live	 in	 and	 on	 what	 kind	 of	 stuff	 fills	 the	 Universe,	 but	 one
conclusion	 is	 pretty	 hard	 to	 circumvent:	 in	 Einstein’s	 theory	 of	 General
Relativity,	 the	 distance	 does	 tend	 to	 change.	 This	 is	 extremely	 important,
because	it	immediately	implies	that	a	Universe	full	of	stars	and	galaxies	like	ours
could	well	be	expanding	or	contracting.

If	 you	 did	 not	 know	 any	 better,	 the	 idea	 of	 an	 expanding	 Universe	 is
surprising,	and	one	might	ask	whether	the	equations	also	allow	for	the	possibility
of	 a	 static	 universe.	 Einstein	 asked	 this	 question.	 In	 1917	 he	 showed	 that	 a
universe	without	stretching	or	shrinking	is	(just	about)	conceivable,	but	to	do	it
he	had	to	introduce	the	cosmological	constant,	which	we	briefly	mentioned	when
we	met	his	field	equations.	Einstein	 included	the	cosmological	constant	simply
because	 there	 is	no	obvious	 reason	why	 it	 should	be	excluded,	and	even	 today
there	is	no	good	understanding	of	what	it	might	represent	at	a	deeper	level.	One
way	 to	 think	 about	 a	 cosmological	 constant	 is	 to	 regard	 it	 as	 a	weird	 form	of
matter.	Ordinary	matter,	of	the	type	that	makes	up	stars	and	planets	and	galaxies
and	people,	 is	made	up	of	particles.	 If	we	capture	 some	of	 these	particles	 in	a
box,	they	zip	around	and	collide	with	the	walls	and	exert	a	pressure	that	acts	to
try	and	expand	the	box.	Einstein’s	weird	matter	can	be	thought	of	as	doing	the
exact	 opposite:	 it	would	 suck	 the	walls	 of	 the	 box	 in	 rather	 than	 push	 against
them.	 This	 might	 sound	 contrived,	 and	 in	 fact	 Einstein	 later	 dismissed	 the
introduction	 of	 the	 cosmological	 constant	 as	 his	 ‘greatest	 blunder’.	 Historians
argue	about	what	Einstein	meant	by	this.	One	possibility	is	 that	he	described	it
that	way	because,	in	spending	so	much	time	trying	to	force	General	Relativity	to
describe	a	static	universe,	he	missed	the	fact	that	his	equations	were	screaming
out	 to	 him	 to	 entertain	 the	 idea	 of	 a	 Universe	 that	 is	 expanding.	 This
uncharacteristic	blindness	meant	he	missed	the	chance	to	predict	the	Big	Bang.

But	 two	 of	 Einstein’s	 contemporaries,	 Alexander	 Friedmann	 in	 the	 Soviet



Union	 and	 the	 Belgian	 Georges	 Lemaître,	 did	 not	 miss	 this	 message.
Independently,	 they	 correctly	 deduced	 that	 Einstein’s	 General	 Theory	 of
Relativity,	when	 applied	 to	 a	Universe	 such	 as	 ours,	 predicts	 that	 it	 should	 be
expanding	or	contracting.

Alexander	 Friedmann	 was	 the	 first	 to	 entertain	 the	 idea	 of	 an	 expanding3
Universe.	He	 used	Einstein’s	 equations	 to	write	 down	 an	 equation	 for	what	 is
known	as	the	scale	factor	of	the	Universe.	The	scale	factor	is	a	number	that	tells
us	 how	much	 space	 is	 stretched	 or	 contracted	 relative	 to	 its	 size	 today–in	 an
expanding	 universe,	 the	 scale	 factor	 would	 be	 smaller	 than	 1	 in	 the	 past	 and
bigger	 than	 1	 in	 the	 future.	 Used	 by	 cosmologists	 today,	 the	 equation	 is,
unsurprisingly,	called	the	Friedmann	equation.	We	explore	the	equation	in	Box
10	 (pp.	 144–5).	 Friedmann	 made	 a	 calculation	 for	 the	 spherical	 geometry	 of
spacetime	in	1922	and	for	the	hyperbolic	geometry	in	1924.	He	did	not	discuss
the	 possibility	 of	 a	 flat	 geometry,	 nor	 did	 he	 comment	 on	 astronomical
implications:	rather,	he	was	more	interested	in	pointing	out	that	Einstein’s	static
solution	(corresponding	to	a	scale	factor	that	does	not	change	with	time)	was	not
necessarily	 correct.	 Lemaître	 re-discovered	 the	 Friedmann	 equation	 in	 1927,
although,	 in	 focusing	 on	 a	 spherical	 geometry	 he	 too	 missed	 the	 flat-space
solution.	 Lemaître’s	 solution	 of	 1927	 described	 an	 infinitely	 old	 spherical
universe	with	an	ever-increasing	scale	factor.

Despite	these	decisive	contributions,	both	Friedmann	and	Lemaître	were	not
so	well	known	in	the	scientific	community,	and	their	work	was	largely	ignored
when	it	was	first	published–partly	because	of	the	prevailing	prejudice	towards	a
static	universe,	supported	by	the	venerable	Einstein,	but	also	for	more	mundane
reasons.	Lemaître’s	paper	appeared	in	French	in	 the	relatively	obscure	Annales
de	 la	 Société	 Scientifique	 de	 Bruxelles,	 and	 was	 not	 widely	 read;	 Friedmann,
meanwhile,	died	of	typhoid	in	1925,	shortly	after	publishing	his	work.	In	1930,
however,	the	well-known	British	physicist	Arthur	Eddington	began	to	publicize
Lemaître’s	 work,	 when	 he	 came	 to	 realize	 that	 Einstein’s	 static	 universe	 was
implausible	because	even	the	tiniest	deviation	from	the	idealized	conditions	that
Einstein	 postulated	 would	 cause	 the	 universe	 to	 expand	 or	 contract.	 The	 dust
finally	settled	in	1933,	when	Princeton	physicist	Howard	Percy	Robertson	wrote
a	 beautiful	 paper	 that	 carefully	 catalogued	 all	 of	 the	 possible	 mathematical
solutions	to	the	Friedmann	equation.	He	counted	eighteen	of	them,	spanning	the
various	logical	possibilities	corresponding	to	flat,	spherical	or	hyperbolic	space
and	varying	amounts	of	cosmological	constant.	Robertson’s	conclusion	was	that,
using	only	Einstein’s	equations	and	pure	logic,	a	universe	containing	matter	can



only	be:

(i)	of	a	finite	age	and	expanding	forever	into	the	future;
(ii)	 of	 a	 finite	 age	 and	 expanding	 for	 some	 period	 of	 time	 before

contracting	back	again;
(iii)	of	infinite	age,	forever	expanding	(the	expansion	rate	would	need	to

tend	towards	zero	in	the	distant	past);
(iv)	of	infinite	age	with	no	expansion	or	contraction;
(v)	of	infinite	age,	first	contracting	and	then	expanding.

In	 those	 solutions	where	 the	universe	has	 a	 finite	 age,	 there	must	 have	been	 a
time	in	the	past	when	the	universe	was	infinitely	dense,	meaning	that	the	average
distance	between	any	two	particles	was	zero.	The	equations	start	to	fail	when	the
distance	between	the	particles	becomes	too	small,	but	the	notion	that	there	was	a
time	when	the	Universe	was	extremely	densely	packed	with	particles	is	a	robust
prediction.	That	special	time	in	the	Universe’s	history	is	what	we	now	refer	to	as
the	 Big	 Bang.	 Scenario	 (iii)	 is	 the	 solution	 found	 by	 Lemaître	 in	 1927	 and
scenario	 (iv)	 is	Einstein’s	 static	 solution.	 Scenario	 (ii)	 is	 interesting	 because	 it
has	 a	 ‘Big	Crunch’	 at	 some	 point	 in	 the	 future,	 and	 scenario	 (i)	 is	 interesting
because,	as	we	will	see	next,	it	is	the	Universe	we	actually	live	in.

BOX	10.	THE	FRIEDMANN	EQUATION

The	 Friedmann	 equation	 is	 without	 a	 doubt	 the	 most	 important
equation	in	cosmology.	Here	it	is:

The	equation	tells	us	how	fast	space	expands	when	the	scale	factor
of	 the	Universe	 is	equal	 to	a.	We	have	written	the	equation	so	that
the	 scale	 factor	 a	 =	 1	 at	 the	 present	 time.	 If	 the	 Universe	 is
expanding,	a	was	smaller	than	1	in	the	past	and	it	will	be	bigger	than



1	 in	 the	 future.	 The	 Friedmann	 equation	 tells	 us	 precisely	 how	 a
changes	as	time	changes.	Let’s	go	through	each	bit	of	the	equation
in	turn.	On	the	left	of	the	equals	sign	is	H,	which	is	the	Hubble	rate:	it
tells	us	how	fast	space	is	expanding	at	some	moment	in	time	and	it
is	 equal	 to	 the	 fractional	 rate	 of	 change	 of	 the	 scale	 factor	 a.	 In
Chapter	6,	we	will	make	our	own	measurement	of	 the	present	day
value	of	H,	and	we’ll	 find	 it	 is	equal	 to	approximately	70	km/s/Mpc,
which	means	that	(today)	space	is	expanding	such	that	two	objects
that	 are	 1	 megaparsec	 apart	 are	 moving	 apart	 at	 a	 speed	 of	 70
kilometres	per	second.	Because	space	 is	assumed	(on	average)	to
be	 the	 same	 everywhere,	 this	 means	 that	 objects	 that	 are	 2
megaparsecs	apart	are	currently	receding	from	each	other	at	a	rate
of	 140	 kilometres	 per	 second,	 and	 so	 on.	 If	 we	 know	 how	H	 has
changed	in	the	past,	and	if	we	know	how	it	will	change	in	the	future,
then	we	will	 also	 know	how	 the	 scale	 factor	a	 has	 changed	 in	 the
past	 and	 how	 it	 will	 change	 in	 the	 future.	 In	 others	words,	we	will
know	everything	there	is	to	know	about	the	expansion	history	of	the
cosmos:	one	of	the	holy	grails	of	cosmology.1

Now	 let’s	 turn	 to	 the	 right	 of	 the	 equals	 sign.	 The	 first	 term
depends	 on	 Newton’s	 gravitational	 constant,	 G,	 and	 also	 on	 the
average	 mass	 density	 of	 the	 Universe,	 denoted	 by	 ρ.	 This	 is	 the
amount	of	mass	in	every	cubic	metre	of	space,	averaged	across	the
Universe.	The	second	 term	 is	where	 the	geometry	of	space	enters
into	things.	The	symbol	K	 just	keeps	track	of	the	sign:	 it	 is	equal	to
+1	 (corresponding	 to	 a	 spherical	 geometry)	 or	 -1	 (hyperbolic
geometry)	 or,	 if	 this	 term	 is	 absent,	 it	 is	 0	 (corresponding	 to	 a	 flat
geometry).	 c	 is	 the	 speed	 of	 light	 and	 R	 is	 the	 curvature	 of	 the
Universe,	which	needs	specifying	 if	 the	Universe	 is	either	spherical
or	 hyperbolic,	 because	 we	 need	 to	 know	 how	 big	 the	 sphere	 or
saddle	is	(a	two-dimensional	hyperbolic	space	looks	like	a	saddle).

The	equation	therefore	tells	us	that	space	is	expanding	at	a	rate
that	is	fixed	by	how	much	stuff	it	contains,	and	its	shape.	This	is	the
essence	of	Einstein’s	equation.

If	 you	are	keen	 to	play	about	with	 the	Friedmann	equation	 then
you	will	want	to	know	how	the	average	mass	density	depends	on	the
scale	factor,	because	clearly	it	will	depend	on	it.	If	you	are	not	keen
then	 you	 can	 safely	 skip	 the	 rest	 of	 this	 paragraph.	 In	 the	 case	of



matter	particles,	like	protons	or	dark	matter,	the	number	of	particles
per	unit	 volume	will	 decrease	as	space	stretches.	This	means	 that
the	density	is	equal	to	the	present-day	density	divided	by	a3	(think	of
measuring	the	density	by	measuring	how	much	matter	is	in	a	cube–
and	 that	 the	 cube	 shrinks	 or	 grows	 by	 a	 factor	 a;	 its	 volume	 will
correspondingly	shrink	or	grow	by	a	factor	a3).	The	case	of	light2	is	a
little	more	subtle;	 it	contributes	to	ρ	by	virtue	of	having	energy,	and
the	appropriate	mass	density	is	obtained	by	dividing	the	energy	per
unit	volume	by	c2.	This	is	how	Einstein’s	theory	of	gravity	differs	from
Newton’s:	Einstein	understood	that	both	mass	and	energy	contribute
to	gravity.	You	might	think	that	the	present-day	contribution	to	ρ	from
light	would	also	need	 to	be	divided	by	a3	 in	order	 to	determine	 the
contribution	at	some	other	time.	But	in	fact	it	needs	to	be	divided	by
a4.	This	 is	because	 light	becomes	redshifted	as	space	expands	(or
blueshifted	as	it	contracts),	which	means	its	energy	density	rises	or
falls	 in	 inverse	 proportion	 to	 the	 scale	 factor.	 The	 last	 remaining
contribution	to	ρ	comes	from	the	energy	that	may	be	stored	in	empty
space,	 such	 as	might	 be	 associated	with	 a	 cosmological	 constant.
This	 source	 of	 mass	 density	 does	 not	 change	 as	 the	 Universe
expands	or	 contracts,	 so	 it	 contributes	a	 constant	 value	 to	ρ.	Now
you	 can	 go	 ahead	 and	 solve	 the	 Friedmann	 equation	 using	 a
computer	(the	integral	you	need	to	do	is	too	hard	to	do	by	hand):	 if
you	 know	 the	 present-day	 mass	 densities	 associated	 with	 light,
matter	and	the	cosmological	constant	then	the	above	information	is
enough	for	you	to	compute	the	value	of	the	scale	factor	a	for	all	time.
We	will	determine	the	present-day	mass	densities	in	Chapter	7.



6.	THE	BIG	BANG

Part	 of	what	makes	Einstein’s	General	Relativity	 so	 astonishing	 is	 that	 it	was,
more	 or	 less,	 an	 exercise	 in	 pure	 thought,	 triggered	 by	 his	 musings	 on	 the
universality	 of	 free-fall.	 It’s	 wonderful	 that	 we	 can	 trace	 the	 development	 of
Einstein’s	happiest	 thought	all	 the	way	through	to	Robertson’s	classification	of
the	 possible	 histories	 of	 the	Universe;	 to	 follow	 this	 simplest,	most	 elegant	 of
ideas	into	uncharted	and	unexpectedly	rich	terrain.

This,	of	course,	is	a	book	about	the	Universe	we	live	in	and	not	an	imaginary
one,	 however	beautiful.	Today,	General	Relativity	has	been	 tested	 to	 exquisite
precision–the	LIGO	detection	of	gravitational	waves	that	we	discussed	in	the	last
chapter	 being	 the	most	 recent	 and	most	 striking	 example.	Now,	 our	 goal	 is	 to
establish	 the	 extent	 to	 which	 the	 Universe	 as	 a	 whole	 fits	 into	 Einstein’s
framework.	We	want	to	gather	evidence	in	support	of	the	idea	that	we	live	in	an
expanding	Universe	that	started	with	a	Big	Bang.

Our	 first	 task	 is	 to	establish	whether	 the	Universe	 is	expanding	now	and	 to
measure	the	rate	of	that	expansion.	We	have	already	seen	one	piece	of	evidence
that	indicates	our	Universe	is	expanding:	the	way	that	light	from	distant	galaxies
is	redshifted.	According	to	General	Relativity,	this	occurs	because	the	expansion
of	 the	 Universe	 causes	 successive	 crests	 and	 troughs	 of	 light	 waves	 to	 move
apart.	This	means	that	the	wavelength	of	light	arriving	at	the	Milky	Way	from	a
distant	galaxy	should	be	increased	(i.e.	redshifted)	by	the	same	fraction	that	the
distance	between	the	two	galaxies	has	increased	during	the	time	the	light	took	to
make	the	journey.	Space	stretches,	and	the	light	stretches	with	it.	If	the	redshift
is	due	to	the	expansion	of	the	Universe,	then	we	can	predict	that	light	from	the
most	 distant	 galaxies	 should	 have	 the	 biggest	 redshifts,	 because	 the	 light	 has
been	 travelling	 for	 longer,	meaning	 that	 space	will	 have	 stretched	more.	 Let’s
see	if	these	features	are	borne	out,	by	taking	a	look	at	some	real	data.

We’ll	use	the	NASA	Extragalactic	Database,	which	is	freely	available	on	the
web,	 and	 explore	 how	 the	 redshifts	 of	 a	 sample	 of	 galaxies	 vary	 with	 their
distances	 from	 Earth.	 So	 far	 in	 the	 book,	 we	 have	 tried	 to	 make	 our	 own
measurements,	so	looking	in	a	database	might	sound	like	cheating,	but	it	is	only
a	 little	 cheat.	 It	 is	 possible	 for	 an	 amateur	 astronomer	with	 a	 reasonably	 sized



telescope	 costing	 a	 few	 thousand	 pounds,	 a	 spectrograph,	 a	 digital	 imaging
system	and	a	laptop	to	make	galaxy	redshift	measurements	for	galaxies	out	as	far
as	100	Mpc.	The	absurdly	suspicious	or	commendably	enthusiastic	 reader	who
doesn’t	 trust	 the	databases	is	encouraged	to	take	this	route.	Indeed,	 if	for	some
reason	 you	 don’t	 believe	 the	 redshift	 data,	 then	 you	 should	 take	 this	 route,
because	it	will	inform	you	that	your	opinion	is	wrong	and	the	databases	are	right.
Taking	delight	 in	being	shown	to	be	wrong	 is	one	of	 the	most	 important	skills
any	human	being,	let	alone	a	scientist,	should	develop.

Figure	6.1	The	Andromeda	galaxy–our	nearest	galactic	neighbour.

In	order	to	test	how	redshift	depends	on	how	far	away	a	galaxy	is,	we	need
precise	distance	measurements	to	far-away	galaxies.	These	are	more	difficult	for
an	amateur	 to	perform.	As	we	have	seen,	 the	Cepheid	method	can	be	used	 for
galaxies	 close	 enough	 for	 individual	 stars	 to	 be	 resolved	 and,	 for	more	distant
galaxies,	 supernovae	 can	 be	 used,	 but	 only	 for	 those	 galaxies	 that	 happen	 to
contain	 a	 supernova	 that	 we	 are	 lucky	 enough	 to	 have	 seen.	 To	 make	 a



comprehensive	 map	 of	 the	 distances	 to	 the	 galaxies,	 we	 really	 could	 do	 with
another	way	to	measure	how	far	away	distant	galaxies	are.

There	 are	 several	 other	widely	used	methods	of	measuring	 the	 distances	 to
galaxies.	One	of	 the	most	accurate	was	developed	 in	1977	by	North	American
astronomers	R.	Brent	 Tully	 and	Rick	 Fisher.	 The	 Tully-Fisher	method	 can	 be
used	to	measure	distances	to	spiral	galaxies,	which	are	so	named	because	of	their
beautiful	spiral	shapes.	The	Milky	Way	and	Andromeda	are	both	spiral	galaxies–
in	Figure	6.1	we	show	a	photo	of	Andromeda;	it	is	a	disc-like	assembly	of	stars
that	is	rotating	about	an	axis	through	its	centre.	Tully	and	Fisher’s	method	uses
the	measured	brightness	of	a	spiral	galaxy	and	the	‘width’	of	its	spectral	lines1	to
determine	how	far	away	it	is,	and	it	is	explained	in	Box	11	(p.	151).	In	the	spirit
of	 this	 book,	 however,	we	would	 also	 like	 a	 simple	 ‘Ogmore-by-Sea’	method
that	will	 allow	 us	 to	 check	 that	 the	more	 sophisticated	 distance	measurements
make	sense.

Here	is	our	simple	method.	Since	all	spiral	galaxies	look	quite	similar	to	each
other,	we	will	 be	 so	 bold	 as	 to	 assert	 that	 they	 are	 all	 roughly	 the	 same	 size.
Under	this	assumption,	we	can	estimate	the	distances	to	all	of	them	if	we	know
the	 distance	 to	 just	 one.	 For	 example,	 if	 a	 galaxy	 is	 half	 the	 size	 of	 the
Andromeda	galaxy,	as	viewed	from	Earth,	we’ll	assume	it	is	twice	as	far	away,
and	 so	 on.	 It	 may	 or	 may	 not	 be	 a	 good	 approximation	 to	 say	 that	 all	 spiral
galaxies	are	exactly	the	same	size,	but	we	might	reasonably	expect	the	variation
in	 sizes	 to	 be	 not	 so	 great	 as	 to	 spoil	 things.	 In	 any	 case,	 since	 we	 have	 the
accurate	 distance	measurements	 to	 hand	 in	 the	NASA	database,	we	 can	 check
whether	our	method	stands	up	under	 the	 illuminating	spotlight	of	 the	precision
data.	The	angular	size	of	the	Andromeda	galaxy	on	the	sky	is	6200	arcseconds,2
and	 the	 distance	 to	 Andromeda	 from	 Earth,	 obtained	 from	 Cepheid	 variable
measurements,	 is	 780,000	 parsecs,	 or	 2.5	 million	 light	 years.	 Our	 old	 friend
NGC4535	has	an	angular	size	of	410	arcseconds	and,	if	we	assume	it’s	the	same
size	as	Andromeda,	this	means	it	must	be	15	times	further	away,	which	puts	it	at
a	distance	of	12	Mpc.	In	total,	we’ve	selected	sixteen	spiral	galaxies	at	random
from	the	NASA	database;	the	distances	and	redshifts	to	these	galaxies	are	listed
in	 Table	 6.1.	 Photographs	 of	 the	 galaxies	 are	 shown	 in	 Figure	 6.2.	 There	 is
nothing	 special	 about	 these	 sixteen	 galaxies	 except	 that	 they	 are	 all	 spirals	 at
redshifts	between	0.001	and	0.02.

BOX	11.	THE	TULLY-FISHER	RELATION



BOX	11.	THE	TULLY-FISHER	RELATION

The	Tully-Fisher	relation	can	be	used	to	determine	how	far	away	a
distant	spiral	galaxy	 is.	 It	exploits	a	correlation	between	how	fast	a
spiral	galaxy	is	spinning	on	its	axis	and	how	bright	it	is.	According	to
Newton’s	Law	of	Gravitation,	 the	speed	at	which	a	distant	 star	will
orbit	around	the	centre	of	a	galaxy	is	determined	by	the	mass	of	the
galaxy,	 see	 Box	 5	 (p.	 64).	 This	 makes	 sense,	 because	 more
massive	galaxies	exert	a	bigger	gravitational	pull,	which	means	stars
can	circle	around	the	galaxy	at	higher	speeds	without	flying	off	 into
space.	 But	 the	 wavelength	 of	 the	 light	 emitted	 from	 a	 star	 and
observed	 on	 Earth	 depends	 partly	 on	 how	 fast	 the	 star	 is	moving
relative	 to	 the	Earth.	Specifically,	 if	 the	 star	 is	moving	 towards	 the
Earth	 the	 light	 will	 be	 slightly	 blueshifted	 and	 if	 it	 is	 moving	 away
from	 the	 Earth	 the	 light	 will	 be	 slightly	 redshifted.	 This	 change	 in
colour	(wavelength)	is	not	due	to	the	expansion	of	space.	Rather,	it
arises	for	much	the	same	reason	that	a	high-pitched	siren	on	a	fast-
moving	ambulance	drops	to	a	lower	pitch	as	the	ambulance	passes
by.	This	is	called	the	Doppler	effect,	and	it	comes	about	because	the
sound	 waves	 emitted	 by	 the	 siren	 are	 compressed	 (shorter
wavelength)	 when	 the	 ambulance	 approaches	 and	 stretched	 out
(longer	wavelength)	when	the	ambulance	recedes.	Because	light	 is
also	a	wave	motion,	there	is	a	Doppler	effect	for	light.	In	the	case	of
a	spiral	galaxy,	this	small	shift	in	wavelength	means	that	the	spectral
lines	we	observe	on	Earth	are	not	precisely	 fixed	at	 one	particular
wavelength:	 they	 are	 spread	 out	 a	 little	 bit,	 with	 some	 light	 being
redshifted	and	some	blueshifted	relative	to	the	average.	The	size	of
the	spread	is	determined	by	how	fast	the	stars	move	and,	as	we	just
said,	this	is	correlated	to	the	mass	of	the	galaxy.	In	addition	to	this,
the	 amount	 of	 light	 a	 galaxy	 emits	 depends	 on	 its	mass,	 which	 is
pretty	obvious,	because	more	massive	galaxies	contain	more	stars.
Since	 the	Doppler	broadening	of	 the	spectral	 lines	and	 the	amount
light	a	galaxy	emits	both	depend	on	the	mass	of	the	galaxy,	it	follows
that	 there	 must	 be	 a	 correlation	 between	 the	 amount	 of	 Doppler
broadening	and	 the	amount	of	 light	 that	a	galaxy	emits,	 i.e.	 faster-
spinning	galaxies	will	have	broader	spectral	 lines	and	they	will	also
be	 more	 massive.	 This	 correlation	 can	 be	 used	 to	 determine	 the



distance	to	a	galaxy	by	measuring	the	galaxy’s	brightness	on	Earth
(more	 distant	 galaxies	 will	 be	 dimmer),	 provided	 that	 we	 first
calibrate	 the	 method	 by	 measuring	 the	 distances	 to	 a	 few	 spiral
galaxies	using	an	 independent	measurement,	such	as	 the	Cepheid
variable	method.

We	chose	the	upper	limit	of	0.02	because	we	wanted	to	be	able	to	identify	the
galaxies	as	spirals	by	eye,	which	allows	us	to	use	the	‘Ogmore-by-Sea’	method
to	estimate	their	distances	from	the	Milky	Way.	As	we’ve	seen,	a	larger	redshift
means	a	greater	distance,	and	therefore	a	smaller	galaxy	on	the	sky.	If	you	look
at	Figure	6.2,	you’ll	see	that	our	highest	redshift	galaxy,	UGC6533,	is	just	about
identifiable	 as	 a	 spiral,	 but	 we	 might	 struggle	 to	 identify	 spirals	 at	 greater
distances	 and,	 as	 a	 result,	 we	 might	 bias	 ourselves	 by	 selecting	 bigger	 than
average	spirals	that	are	easier	to	see.



There	are	also	spiral	galaxies	with	redshifts	smaller	 than	0.001.	 Indeed,	our
closest	neighbour	Andromeda	has	a	negative	redshift	of	−0.001.	This	means	that
the	 light	 is	 shifted	 towards	 the	 blue	 part	 of	 the	 spectrum,	 signifying	 that
Andromeda	is	hurtling	towards	us	and	will	hit	us	in	around	4	billion	years.	This
blueshift	of	Andromeda	is	caused	by	the	Doppler	effect,	which	we	explained	in
Box	 11	 (p.	 151).	 We	 can	 understand	 the	 blueshift	 of	 Andromeda	 once	 we
appreciate	 that	 galaxies	 are	 not	 only	 carried	 along	 with	 the	 expansion	 of	 the



Universe.	They	also	move	around	because	of	local	gravitational	interactions,	just
as	the	Earth	orbits	the	Sun	and	the	Sun	orbits	the	centre	of	the	Milky	Way.	So,
we	have	to	factor	in	this	‘proper	motion’	of	a	galaxy,	as	well	as	its	motion	due	to
the	expansion	of	space:	accounting	for	it	would	lead	to	an	additional	red	or	blue
Doppler	 shift	 superimposed	 on	 the	 redshift	 caused	 by	 the	 expansion	 of	 the
Universe.	As	far	as	the	Andromeda	galaxy	is	concerned,	the	blueshift	completely
dominates,	because	it	is	so	close	that	the	effect	of	the	expanding	Universe	on	its
light	 is	very	small.	For	sufficiently	distant	galaxies,	however,	 the	cosmological
redshifts	 are	 large	 enough	 to	 overwhelm	 any	 Doppler	 shifts	 caused	 by	 their
proper	 motions–which	 is	 why	 we	 only	 selected	 galaxies	 at	 distances	 above	 4
Mpc,	corresponding	to	redshifts	above	0.001.



Figure	6.2	The	sixteen	spiral	galaxies	used	to	measure	the	rate	at	which

space	is	expanding.



The	approximate	distances	to	the	other	galaxies	in	Table	6.1	are	worked	out	in
the	 same	way	 that	we	worked	out	 the	distance	 to	NGC4535	and	appear	 in	 the
column	 labelled	 ‘Estimated	 distance’.	 These	 are	 to	 be	 compared	 with	 the
numbers	 in	 the	 ‘Measured	 distance’	 column,	 which	 were	 obtained	 by	 the
professionals.

The	closest	galaxy	in	the	list	is	NGC1313,	at	a	distance	of	around	4	Mpc,	and
a	redshift	of	0.00157.	The	most	distant	is	UGC6533,	whose	redshift	is	a	factor	of
10	 larger	at	0.0179.	Looking	at	 the	Table,	 the	most	distant	galaxy	exhibits	 the
largest	redshift,	and	the	other	galaxies	appear	to	be	such	that	larger	redshifts	are
associated	with	more	distant	galaxies.	This	is	in	line	with	what	we	expect	for	an
expanding	Universe.	To	make	our	observation	more	visible,	we	should	plot	the
data	on	a	graph,	and	this	is	what	we’ve	done	in	Figure	6.3.

Immediately,	 the	 pattern	 in	 the	 data	 springs	 into	 view:	 all	 the	 points	 are
scattered	around	a	straight	line.	In	Figure	6.4	we	show	Edwin	Hubble’s	variant
on	 this	 type	 of	 graph,	 which	 he	 produced	 in	 1929.	 Hubble’s	 vertical	 axis	 is
slightly	different	from	ours,	because	he	chose	 to	present	his	results	 in	 terms	of
the	‘recessional	velocity’	of	the	galaxies	rather	than	the	redshift.	As	we	will	see
in	a	moment,	 the	 recessional	velocity	 is	equal	 to	 the	 redshift	multiplied	by	 the
speed	of	light,	so	Hubble’s	data	extend	to	redshifts	as	large	as	0.003	(1000	km/s
divided	by	3	x	105	km/s).

Our	graphs	and	Hubble’s	have	straight	 lines	drawn	 through	 the	data	points.
These	correspond	to	the	‘best-fit’	lines,	which	means	they	are	the	optimal	lines
that	 can	 be	 drawn	 through	 the	 data.	 The	 data	 from	 the	 sixteen	 galaxies	 are
scattered	 in	 the	 vicinity	 of	 the	 line	 but,	 because	 the	measured	 distances	 to	 the
galaxies	 are	 uncertain,	 the	 data	 are	 consistent	 with	 the	 line	 being	 the	 true
description	of	what	 is	happening.	By	 this	we	mean	 that,	 if	we	are	confident	 in
the	redshift	value	of	a	galaxy,	then	the	line	will	give	us	a	better	measurement	of
the	 distance	 than	 the	 Tully-Fisher	 measurement	 does.	 For	 example,	 the	 table
shows	 that	NGC0011	has	 a	 redshift	 of	0.0146	and	 its	measured	distance	 is	 55
Mpc.	 But	 from	 the	 left-hand	 graph	 in	 Figure	 6.3,	 you	 can	 use	 the	 line	 to
conclude	 that	 this	 distance	 is	 probably	 a	bit	 too	 low,	 and	 that	 the	 actual	 value
might	be	more	 like	65	Mpc.	To	do	 that	 you	need	 to	notice	 that	 the	data	point
corresponding	to	NGC0011	is	the	sixth	point	from	the	right.3

The	 line	 in	 the	 left-hand	graph	corresponds	 to	 the	equation	z	=	2.23	×	10−4
Mpc−1	×	d,	where	d	is	the	distance	and	z	is	the	redshift.	Notice	that	this	allows	us
to	 determine	 the	 distance	 to	 any	 astronomical	 object	 simply	 by	 observing	 its
redshift–that’s	to	say,	take	the	redshift	and	divide	it	by	2.23	×	10−4	to	determine



the	 distance	 in	 megaparsecs	 (this	 gives	 65.5	 for	 NGC0011).	 This	 technique
provides	 astronomers	with	yet	 another	way	 to	determine	distances	 to	 far-away
objects.	 Strictly	 speaking,	 we	 should	 only	 use	 the	 equation	 for	 objects	 whose
redshifts	 lie	 between	 0.001	 and	 0.02,	 because	 we	 haven’t	 plotted	 any	 data
outside	 this	 range.4	 The	 number	 2.23	 ×	 10−4	Mpc−1	 is	 called	 the	 gradient,	 or
slope,	 of	 the	 graph.	 This	 is	 a	 very	 important	 number	 because,	 apart	 from
calibrating	the	redshift–distance	relation,	it	tells	us	how	fast	space	is	expanding.
Let’s	now	understand	why	it	should	do	so.

Figure	6.3	The	redshift	of	the	spiral	galaxies	in	our	sample,	plotted	against

their	distances	from	Earth.	The	graph	on	the	left	is	the	Hubble	plot	made	using

distances	as	determined	by	professional	astronomers,	and	the	graph	on	the

right	is	the	Hubble	plot	made	using	estimated	distances	to	the	galaxies	under

the	assumption	that	they	are	the	same	size.



For	 a	 galaxy	 that	 is	 a	 distance	 d	 away,	 the	 light	 takes	 a	 time	 d/c	 to	 reach
Earth,	where	c	is	the	speed	of	light.	During	this	interval	of	time,	the	Universe	has
stretched	by	the	same	factor	as	the	light,	which	is	the	redshift	z.	This	means	that
the	galaxy	has	receded	from	Earth	by	a	distance	zd	in	a	time	d/c,	i.e.	the	galaxy
is	 receding	 from	 the	Earth	at	 a	 speed	v	=	zd/(d/c)	=	cz.	This	 is	 the	 recessional
velocity	that	Hubble	plotted	on	the	vertical	axis	instead	of	the	redshift.	Hubble’s
graph	demonstrates	what	is	now	known	as	Hubble’s	Law,	which	states	that	the
recessional	 velocity	 of	 a	 galaxy	 v	 =	 Hd,	 where	 H	 is	 equal	 to	 the	 slope	 of
Hubble’s	plot.	Naturally	enough,	H	 is	known	as	 the	Hubble	constant,	 and	 it	 is
one	 of	 the	 most	 important	 numbers	 in	 physics	 because,	 as	 we	 will	 see	 in	 a
moment,	it	is	the	number	that	tells	us	how	fast	space	is	stretching.	According	to
Hubble’s	 original	 data,	 H	 had	 a	 value	 of	 approximately	 500	 km/s/Mpc
(something	you	 can	 read	directly	 off	 his	 graph).	According	 to	 our	 graph,	H	 is
equal	to	the	speed	of	light	multiplied	by	the	slope	of	our	line,	i.e.	3	×	105	km/s	×
2.23	 ×	 10−4	Mpc−1	 =	 67	 km/s/Mpc.	 Clearly	 our	 result	 is	 not	 compatible	with
Hubble’s.	 The	 reason	 for	 the	 discrepancy	 is	 that	 Hubble	 underestimated	 the
distances	 to	 his	 galaxies,	 just	 as	 he	 did	 when	 he	 correctly	 identified	 that
Andromeda	is	far	outside	the	Milky	Way.	Notwithstanding	this,	his	plot	was	the
first	experimental	evidence	to	indicate	that	the	Universe	is	expanding.



Figure	6.4	Edwin	Hubble’s	original	graph.	The	velocities	with	which	nearby

galaxies	recede	from	Earth	constitute	the	y-axis	and	their	distances	from	Earth

are	shown	on	the	x-axis.	(The	woefully	labelled	y-axis	should	read	km/s,	not

km.)

A	Hubble	constant	of	67	km/s/Mpc	means	that	a	galaxy	that	is	1	Mpc	away
from	 Earth	 is	moving	 away	 from	 the	 Earth	 at	 a	 speed	 of	 67	 km/s	 due	 to	 the
expansion	of	space	(and	a	galaxy	at	10	Mpc	is	moving	away	at	670	km/s).	This
linear	 relationship	 between	 redshift	 (or	 recessional	 velocity)	 and	 distance	 is
precisely	what	we	would	expect	if	space	has	been	expanding	at	a	constant	rate.
This	means	our	 spiral	 galaxy	data	 confirm	 that	 space	has	been	 expanding	 at	 a
uniform	rate,	at	least	for	the	past	300	million	years	(because	we	only	looked	at
galaxies	out	to	100	Mpc,	and	the	light	travel	time	from	these	galaxies	is	just	over
300	million	years).

A	 nice	way	 to	 visualize	 how	Hubble’s	 law	 comes	 about	 is	 to	 draw	 lots	 of
spots	on	the	surface	of	a	balloon	and	then	inflate	the	balloon.	The	dots	all	rush
away	 from	 each	 other	 as	 the	 fabric	 of	 the	 balloon	 stretches;	 the	 dots	 that	 are
further	 apart	 rush	 away	 from	 each	 other	 faster.	 If	 the	 expansion	 rate	 of	 the
balloon	stays	constant,	 the	balloon	Hubble	constant	will	be	measured	 to	be	 the
same	 for	 each	 dot,	 as	 seen	 from	 any	 other	 dot,	 and	 we’ll	 get	 a	 ‘straight	 line
balloon	Hubble	plot’.	Substitute	‘galaxy’	for	‘dot’	and	this	is	what	we	see	in	our
spiral	 galaxy	 data.	 The	 surface	 of	 a	 balloon	 is	 a	 two-dimensional	 example;	 a
three-dimensional	example	is	 the	case	of	a	cake	containing	raisins	being	baked



inside	 an	 oven.	As	 the	 cake	 expands,	 the	 raisins	move	 away	 from	 each	 other.
The	 Big	 Bang	would	 then	 be	 like	 the	moment	when	we	 start	 to	 cook	 a	 huge
(possibly	 infinitely	 big)	 blob	 of	 dense	 dough.	 So,	 our	 Universe	 is	 more	 like
baking	a	cake	than	inflating	a	balloon.	This	illuminates	one	of	the	more	common
misunderstandings	in	modern	cosmology.	The	observational	fact	that	all	galaxies
beyond	our	nearest	neighbours	appear	to	be	rushing	away	from	us	does	not	mean
we	are	at	the	centre	of	the	Universe,	in	the	same	way	that	no	dot	on	the	surface
of	 a	 balloon	 can	 be	 said	 to	 be	 at	 the	 balloon’s	 centre.	 Rather,	 the	 data	 lend
support	 to	 the	 picture,	 which	 stems	 from	 General	 Relativity,	 in	 which	 the
galaxies	are	riding	along	in	a	Universe	whose	space	is	expanding.

To	finish	off	this	analysis,	 let’s	take	another	look	at	 the	right-hand	graph	in
Figure	 6.3,	 which	 is	made	 using	 our	 simple	 estimate	 of	 distances	 to	 galaxies.
Using	 it,	 we	 obtain	 a	Hubble	 constant	H	 =	 79	 km/s/Mpc.	 This	 is	 satisfyingly
close	 to	 the	 more	 accurate	 result,	 and	 while	 the	 data	 are	 far	 more	 scattered
around	 the	 line	 than	 for	 the	 left-hand	 graph,	 the	 general	 trend	 towards	 higher
redshifts	as	the	distances	increase	is	still	apparent.	The	broad	agreement	between
the	 two	 approaches	 indicates	 that	 our	 assumption	 that	 all	 spiral	 galaxies	 are
roughly	 the	 same	size	was	not	 too	bad	after	 all.	 It	 is	 satisfying	when	a	 simple
approach	 is	 able	 to	 produce	 an	 approximate	 result	 that	 corroborates	 a	 more
sophisticated	 analysis–it	 is	 a	 kind	 of	 sanity	 check.	 It	 is	 even	 more	 satisfying
when	we	learn	that	the	most	precise	determination	of	the	Hubble	constant,	made
using	data	collected	by	the	European	Space	Agency’s	Planck	satellite,	is	67.8	±
0.9	 km/s/Mpc.	This	 is	 terrific	 physics:	 anybody,	 standing	 in	 their	 back	 garden
with	a	reasonably	sized	amateur	telescope	and	a	few	thousand	pounds	worth	of
kit,	can	prove	that	we	live	in	an	expanding	Universe	and	measure	the	rate	of	the
Universe’s	expansion.5

Let’s	recap	for	a	moment.	We	have	used	observational	data	on	sixteen	spiral
galaxies	at	distances	between	4	and	84	Mpc	to	determine	that	the	Universe	has
been	expanding	at	a	constant	rate	for	the	past	300	million	years	or	so.	We	know
this	because	the	data	on	our	Hubble	plot	fall	on	a	straight	line.	This	fits	with	our
expectations	based	on	General	Relativity.	While	we	used	a	database	rather	than
measurements	we	made	ourselves,	we	hope	that	it	doesn’t	bother	you	too	much
by	this	stage.	As	our	exploration	of	the	Universe	gets	more	ambitious,	we	must
inevitably	 reach	 the	 point	 where	 the	 measurements	 we	 need	 to	 make	 require
more	than	just	a	camera	and	a	map	of	Ogmore-by-Sea.	If	this	weren’t	the	case,
we	wouldn’t	 need	 to	 spend	 billions	 of	 pounds	 on	 sophisticated	 telescopes	 and
Large	 Hadron	 Colliders.	 The	 age	 of	 the	 lone	 experimental	 scientist	 is	 almost



over,	 certainly	 in	 particle	 physics	 and	 cosmology,	 because	 all	 the	 simple
measurements	have	been	made,	and	there	is	admittedly	a	certain	loss	of	romance
in	this.	At	the	end	of	the	eighteenth	century,	Wordsworth	wrote	of	the	statue	of
Newton	at	the	entrance	to	Trinity	College,	Cambridge:

And	from	my	pillow,	looking	forth	by	light
Of	moon	or	favouring	stars.	I	could	behold
The	Antechapel	where	the	Statue	stood
Of	Newton,	with	his	prism	and	his	silent	face,
The	marble	index	of	a	Mind	for	ever
Voyaging	through	strange	seas	of	Thought,	alone.

Nevertheless,	the	romantic	deficit	is	not	total.	It	is	still	open	to	us	to	understand,
or	even	to	participate	in,	the	large	experimental	collaborations	that	have	replaced
the	 individual	 in	 gathering	 precise	 data	 about	 the	Universe.	 If	we	 spend	 some
time	 understanding	 how	 the	 data	were	 acquired,	 and	 satisfy	 ourselves	 that	we
understand	the	measurements,	there	is	no	reason	why	we	shouldn’t	use	the	data
to	voyage	alone	through	strange	seas	of	thought	and	to	convince	ourselves	of	the
veracity	 of	 the	 remarkable	 picture	 of	 reality	 that	modern	 science	 delivers.	 So,
from	now	on,	we	will	rely	heavily	on	the	data	collected	by	modern-day	teams	of
astronomers	as	we	head	rapidly	towards	the	frontiers	of	current	understanding.

We	are	still	quite	some	way	from	establishing	the	existence	of	the	Big	Bang.
That’s	 because,	 although	 we	 have	 managed	 to	 confirm	 that	 the	 Universe	 has
been	 expanding	 at	 the	 same	 rate	 for	 at	 least	 the	 last	 300	million	years,	 such	 a
confirmation	 only	 rules	 out	 scenario	 (iv)	 from	 Robertson’s	 list	 (p.	 142):	 the
static,	 eternal	Universe	 initially	 favoured	by	Einstein	himself.	 It’s	 time	now	 to
turn	to	the	evidence	that	the	Universe	has	been	expanding	for	nearly	14	billion
years.

We	are	going	to	do	this	by	supposing	there	actually	was	a	Big	Bang	and	then
exploring	what	 the	 consequences	of	 that	 supposition	might	be.	Of	 course,	 it	 is
pretty	well	 known	 that	 there	 is	 a	 good	 deal	 of	 evidence	 in	 support	 of	 the	Big
Bang–but	the	process	of	making	a	guess	and	seeing	where	the	guess	takes	us	is
something	that	underpins	how	cutting-edge	science	is	often	done.	As	the	iconic
theoretical	physicist	Richard	Feynman	put	it,	when	describing	the	search	for	new
laws	of	Nature:



In	general	we	look	for	a	new	law	by	the	following	process.	First	we	guess
it.	Then	we	compute	the	consequences	of	the	guess	to	see	what	would	be
implied	if	this	law	that	we	guessed	is	right.	Then	we	compare	the	result	of
the	 computation	 to	 nature,	 with	 experiment	 or	 experience,	 compare	 it
directly	 with	 observation,	 to	 see	 if	 it	 works.	 If	 it	 disagrees	 with
experiment	 it	 is	wrong.	 In	 that	simple	statement	 is	 the	key	 to	science.	 It
does	 not	 make	 any	 difference	 how	 beautiful	 your	 guess	 is.	 It	 does	 not
make	any	difference	how	smart	you	are,	who	made	the	guess,	or	what	his
name	is–if	it	disagrees	with	experiment	it	is	wrong.	That	is	all	there	is	to
it.

Here,	our	guess	is	that	we	live	in	an	expanding	Universe	of	finite	age,	which	is
to	say	that	there	was	once	a	Big	Bang.	In	other	words,	we	are	guessing	that	our
Universe	 is	either	 scenario	 (i)	 (expand	 for	ever	 into	 the	 future)	or	 scenario	 (ii)
(expand	and	then	contract	to	a	Big	Crunch)	on	Robertson’s	list.	Our	guess	will
force	us	to	make	a	prediction	for	the	relative	amounts	of	hydrogen	and	helium	in
the	Universe,	and	we	can	then	compare	the	result	of	the	computation	to	Nature,
as	Feynman	put	it,	to	see	if	it	works.

If	our	Universe	started	with	a	Big	Bang	and	has	been	expanding	ever	since,
there	would	have	been	a	time	in	the	distant	past	when	any	two	points	were	very
close	together.	The	particles	that	make	up	the	most	distant	stars	would	have	been
within	 a	 centimetre	 of	 the	 particles	 that	 make	 up	 your	 body.	 Of	 course,	 they
would	once	have	been	even	closer	 than	a	 centimetre–but	 that	 is	 already	mind-
boggling	enough.	The	point	is	that,	in	a	universe	that	has	been	expanding	for	its
entire	lifetime,	there	will	have	been	a	time	when	things	were	squashed	together
into	a	state	of	very	high	density.	Imagine	squashing	all	of	the	planets	in	the	solar
system	into	a	region	the	size	of	a	pea,	never	mind	all	the	stars	in	the	Milky	Way
galaxy	 and	 all	 of	 the	 galaxies	 in	 the	 sky.	 As	 far	 as	 particle	 physicists	 can
ascertain,	 the	 particles	 that	 make	 up	 atoms	 are	 of	 no	 discernible	 size,	 so	 the
notion	that	all	the	matter	in	the	observable	Universe	was	once	contained	within	a
tiny	 region	 is	 not	 as	 crazy	 as	 it	 sounds.	 In	 any	 case,	we	 don’t	 need	 to	 let	 our
imagination	run	quite	so	wild	for	the	time	being.	We	just	need	to	suppose	that	at
some	time,	long	ago,	the	Universe	was	of	a	much	higher	density	than	it	is	today.
That	idea	alone	is	going	to	prove	very	fruitful.

Incidentally,	saying	that	the	entire	observable	Universe	was	once	compressed
into	a	tiny	region	of	space	is	not	the	same	as	saying	that,	at	the	time	of	the	Big
Bang,	 the	 Universe	 burst	 forth	 from	 a	 tiny	 region	 of	 space.	 The	 word



‘observable’	 in	 ‘observable	Universe’	 is	crucial	 in	making	 this	distinction.	The
observable	Universe	is	the	collection	of	things	that	we	know	to	exist	because	we
can	see	them.6	There	may	be	more	to	the	Universe	than	this,	but	we	can’t	see	the
other	 stuff	 because	 light	 travels	 at	 ‘only’	 300,000	 kilometres	 per	 second	 and
hasn’t	had	time	to	reach	us	from	very	distant	objects.	We	therefore	do	not	know
how	big	the	Universe	is–and	it	may	be	infinitely	big,	in	which	case	it	would	have
been	infinitely	big	at	the	time	of	the	Big	Bang.	To	visualize	this,	we	can	return	to
the	 cake-baking	 analogy.	 Just	 after	 the	 Big	 Bang,	 the	 particles	 were	 close
together;	as	 time	passes,	 the	 ‘cake’	stretches	and	 the	particles	 (like	 the	 raisins)
move	away	from	each	other.	This	analogy	invites	us	to	picture	the	Big	Bang	as
something	that	happened	everywhere	in	space,	and	perhaps	invites	us	to	rename
it	the	Big	Stretch.	What’s	more,	there	is	no	reason	why	the	‘cake’	couldn’t	have
started	 out	 infinitely	 big:	 it	 can	 still	 expand	 and	 the	 particles	 will	 still	 be
observed	to	move	away	from	each	other	as	time	passes.

Now	let’s	focus	our	attention	on	the	physical	conditions	when	the	Universe
was	 very	 much	 denser	 than	 it	 is	 today,	 and	 all	 the	 particles	 were	 very	 close
together.	We	can	immediately	say	that	it	was	very	hot.	The	idea	that	a	gas	heats
up	when	 it	 is	 compressed	 into	 a	 smaller	 region	 of	 space	 is	 familiar	 to	 anyone
who	has	used	a	bicycle	pump	to	inflate	a	tyre.	Let’s	imagine	a	journey	back	in
time.	The	clumping	of	gas	and	rocks	into	stars	and	planets	and	the	clustering	of
stars	into	galaxies	will	be	undone.	If	we	go	far	enough	back,	even	atoms–which
are	 clumps	of	protons,	 neutrons	 and	electrons–will	 break	 apart	 as	 they	melt	 in
the	searing	temperatures.	In	fact,	let’s	go	back	to	a	time	when	the	Universe	was	a
hot,	 dense,	 featureless	 gas	 of	 elementary	 particles;	 protons,	 neutrons,	 photons,
electrons	 and	neutrinos.	The	 temperature	 is	 now	around	1	billion	degrees,	 and
the	Universe	 is	only	a	matter	of	seconds	old.7	 It	 is	 likely	 that	 there	were	some
dark	 matter	 particles	 too,	 but	 we	 know	 that	 these	 interact	 very	 weakly	 with
ordinary	matter,	meaning	that	they	were	not	major	players	in	the	drama	we	are
about	to	describe.	If	you	don’t	buy	that,	which	is	fair	enough	because	we	haven’t
presented	any	evidence	yet,	then	we	can	guess	that	the	dark	matter	is	passive	and
see	what	predictions	emerge.

We	have	chosen	to	wind	the	clock	back	to	when	the	Universe	was	a	billion
degrees	because	we	are	interested	in	the	question	of	the	origin	and	abundance	of
chemical	elements	like	helium	in	the	Universe,	and	this	is	the	time	when	the	first
atomic	 elements	 were	 assembled	 from	 the	 primordial	 protons	 and	 neutrons.
Although	we	are	guessing	that	such	conditions	were	once	present	in	the	Universe
(a	hypothesis	 suggested	by	our	prior	observation	 that	 the	Universe	 is	currently



expanding),	we	most	certainly	do	not	have	to	guess	about	the	physics	that	takes
place	at	such	temperatures.	Everything	that	we	are	about	to	describe	is	very	well
tried	and	tested	nuclear	physics.

Isolated	neutrons	do	not	live	for	very	long.	One	of	them	has	a	typical	lifetime
of	 about	 10	 minutes,	 after	 which	 it	 decays	 into	 a	 proton,	 an	 electron	 and	 a
neutrino.	The	word	‘isolated’	is	important,	because	neutrons	can	live	for	ever	if
they	bind	 together	with	protons	 to	make	atomic	nuclei.	 In	 the	dense,	1-billion-
degree-hot	soup,	a	neutron	can	collide	with	a	proton	before	it	has	time	to	decay
and	the	two	will	stick	together	through	the	action	of	the	strong	nuclear	force	to
form	 a	 deuterium	 nucleus.	 If	 the	 soup	was	much	 hotter,	 the	 deuterium	would
quickly	break	up	again,	but	at	temperatures	below	1	billion	degrees	it	is	stable.
Deuterium	nuclei	can	then	fuse	with	more	protons	and	other	deuterium	nuclei	to
form	helium	and,	eventually,	very	small	amounts	of	lithium.

Around	3	minutes	after	the	Big	Bang,	as	the	Universe	expanded	and	cooled,
the	 temperatures	 fell	 below	 those	 at	 which	 such	 nuclear	 fusion	 reactions	 can
occur,	and	the	synthesis	of	the	first	elements	stopped.	This	process	is	known	as
Big	Bang	Nucleosynthesis.	Textbook	nuclear	physics	calculations	predict	what	it
produced:	approximately	25%	by	mass	helium	and	75%	hydrogen	with	traces	of
deuterium	 and	 lithium,	 the	 amounts	 of	 which	 can	 be	 calculated	 provided	 we
know	 the	 ratio	 of	 the	 number	 of	 photons	 to	 the	 total	 number	 of	 protons	 and
neutrons	 in	 the	 Universe.	 Turning	 this	 round,	 the	 calculations	 allow	 us	 to
determine	 the	 photon-to-proton	 ratio,	 if	 we	 can	 measure	 the	 amount	 of
deuterium.

The	fact	that	the	Sun	contains	roughly	27%	helium,	excluding	the	helium	that
has	 been	 produced	 in	 its	 core,	 is	 an	 encouraging	 start.	 However,	 the	 task	 of
making	 precise	 comparisons	 between	 the	 nuclear	 physics	 calculations	 and	 the
astronomical	 observations	 is	 not	 entirely	 straightforward,	 mainly	 because	 the
stars	fuse	hydrogen	in	their	cores	to	make	heavier	elements–and,	when	stars	run
out	 of	 fuel	 and	 explode,	 these	 newly	 minted	 nuclei	 can	 get	 scattered	 around,
polluting	 the	 conditions	 that	 pertained	 after	 Big	 Bang	 Nucleosynthesis.	 To
circumvent	 the	 uncertainties	 that	 arise	 from	 not	 knowing	 precisely	 how	much
pollution	there	 is	from	dead	stars,	astronomers	 identify	regions	in	 the	Universe
in	which	the	action	of	stars	has	not	had	a	large	effect.	One	way	to	do	this	is	to
look	at	the	abundance	of	elements	such	as	oxygen,	which	could	only	have	been
made	 in	 stars.	 If	very	 little	oxygen	 is	present	 in	 some	 region	of	 space,	we	can
infer	that	the	products	of	the	nuclear	reactions	inside	stars	have	not	yet	polluted
the	 local	 environment.	There	are	places	known	as	HII	 regions	 (pronounced	 ‘H



two’),	 particularly	 inside	 dwarf	 galaxies,	 which	 satisfy	 this	 criterion.
Astronomers	can	also	look	at	very	distant,	bright	objects	known	as	quasars,	some
of	which	 are	 over	 10	 billion	 light	 years	 away.	We	 are	 seeing	 these	 objects	 as
they	were	less	than	4	billion	years	after	the	Big	Bang,	and	this	is	not	sufficient
time	 for	 much	 stellar	 nucleosynthesis,	 so	 the	 quasars	 exist	 in	 a	 more	 pristine
environment.	 Just	 as	 predicted,	 these	 regions	 contain	 25%	 helium	 and	 75%
hydrogen.

The	 most	 accurate	 measurements	 of	 the	 deuterium	 content	 of	 the	 early
Universe	 come	 from	 these	 quasars,	 and	 they	 tell	 us	 that	 there	 are	 around	 30
deuterium	 nuclei	 for	 every	 million	 hydrogen	 nuclei.	 Primordial	 elemental
abundances	can	also	be	measured	by	observing	the	light	emitted	from	the	outer
layers	of	very	old	stars,	which	would	reflect	 the	composition	of	 the	primordial
gas	clouds	out	of	which	they	formed.	There	are	stars	 in	 the	Milky	Way	galaxy
that	are	well	over	10	billion	years	old.	Some	of	these,	known	as	‘lithium-plateau’
stars,	 are	 used	 to	measure	 the	 lithium	 content	 of	 the	 early	Universe.	 There	 is
around	one	lithium	nucleus	for	every	10	billion	hydrogen	nuclei	 in	 these	stars’
outer	layers.

The	good	agreement	between	the	observed	and	predicted	relative	amounts	of
primordial	 helium	 and	 hydrogen	 provides	 our	 first	 piece	 of	 evidence	 that	 the
Universe	has	been	expanding,	not	only	for	the	past	300	million	years	(which	is
what	our	Hubble	plot	demonstrated),	but	at	 least	since	it	was	a	hot	plasma	at	a
temperature	 of	 a	 billion	 degrees	 (a	 plasma	 is	 a	 hot	 gas	 of	 electrically	 charged
particles).	 The	 theoretical	 calculations	 are	 also	 able	 to	 explain	 the	 primordial
abundances	 of	 deuterium	 and	 lithium.8	We	 said	 that	 these	 abundances	 can	 be
predicted	 only	 if	 we	 know	 the	 photon-to-proton	 ratio:	 a	 ratio	 of	 1.7	 billion
photons	for	every	proton	or	neutron,	averaged	across	the	Universe,	is	the	value
that	makes	 the	 predictions	 accord	with	 observations.	We	will	 be	 able	 to	 cross
check	this,	using	a	totally	different	method,	in	Chapter	8.

Big	 Bang	 Nucleosynthesis	 ended	 after	 a	 few	 minutes,	 and	 laid	 down	 the
primordial	elements	that	are	spread	across	the	Universe	today,	usually	as	clouds
of	atoms	but	occasionally	as	stars.	Here,	we	ought	to	say	a	word	or	two	about	the
origin	of	the	other,	heavier,	elements.	These	were	produced	much	later	on	in	the
history	of	the	Universe,	as	a	result	of	nuclear	processes	in	the	hearts	of	stars.	The
first	stars	were	formed	out	of	 the	primordial	hydrogen	and	helium	and,	as	 they
burned,	 they	 fused	 the	 nuclei	 in	 their	 cores	 to	make	 heavier	 elements	 such	 as
carbon	and	oxygen.	Elements	as	massive	as	iron	can	be	made	this	way,	but	the
heavier	 elements,	 including	 gold	 and	 silver,	 were	 formed	 in	 even	 more



spectacular	fashion.	After	a	few	billion	years,	massive	stars	run	out	of	fuel	and
die.	The	most	massive	explode,	producing	supernovae;	the	furnaces	in	which	the
heaviest	elements	are	forged.	They	also	scatter	 the	newly	synthesized	elements
across	space,	seeding	the	eventual	formation	of	planets	such	as	ours.	This	is	why
the	 outer	 layers	 of	 the	 Sun	 contain	 a	 slightly	 higher	 helium	 content	 than	 the
oldest	 stars	 in	 the	 Milky	 Way:	 the	 stars	 that	 lived	 and	 died	 before	 the	 Sun
formed	 have	 contaminated	 it	 with	 extra	 helium,	 not	 to	 mention	 the	 oxygen,
nitrogen,	 iron	 and	 other	 elements	 beyond	 hydrogen	 that	 we	 see	 in	 the	 solar
spectrum.	Again,	we	see	consistency	in	our	description	of	Nature.

Let’s	now	follow	 the	evolution	of	 the	Universe	 forward	 in	 time	 from	 those
first	few	minutes	and	see	if	there	is	anything	else	we	can	deduce	that	may	lead	to
observable	consequences	and	give	us	still	more	confidence	in	the	idea	of	the	Big
Bang.	 The	 next	 major	 landmark	 occurred	 when	 the	 Universe	 had	 cooled
sufficiently	 for	 the	 electrons	 and	 primordial	 atomic	 nuclei	 to	 stick	 together	 to
make	atoms.	This	happens	at	a	 temperature	of	a	few	thousand	degrees,	and	we
understand	the	process	very	well	 indeed	from	laboratories	on	Earth.	Before	the
Universe	cooled	 to	 this	 temperature,	 it	was	 largely	featureless	plasma	made	up
mainly	 of	 photons	 and	 neutrinos,	 with	 a	 tiny	 admixture	 of	 light	 nuclei	 and
electrons.	At	early	enough	times,	when	the	plasma	was	too	hot,	the	electrons	and
nuclei	were	 zipping	 around	 too	 rapidly	 to	 stick	 together	 and	 form	atoms	 (they
can	stick	together	as	a	result	of	their	mutual	electromagnetic	attraction	because
they	 have	 opposite	 electric	 charge).	 But,	 as	 the	Universe	 cooled,	 the	 particles
moved	 around	 less	 energetically	 and	 it	 became	 increasingly	 likely	 that	 an
electron	 found	 itself	 bound	 in	 orbit	 around	 a	 nucleus	 to	 make	 an	 atom.	 This
landmark	event–the	formation	of	atomic	hydrogen	and	helium	atoms–had	a	very
dramatic	impact	on	the	photons	in	the	Universe.

Everything	changed	when	the	atoms	formed.	Before	this	time,	photons	were
unable	to	travel	very	far	before	hitting	an	electron	or	an	atomic	nucleus.	That	is
because	 photons	 scatter	 strongly	 off	 electrically	 charged	 particles.9	 But	 with
virtually	all	the	charged	particles	combining	to	make	electrically	neutral	atoms,
this	 state	 of	 things	 altered:	 photons	 do	 not	 scatter	 so	 easily	 off	 atoms.	 The
Universe	 therefore	made	 a	 transition	 from	 being	 opaque	 to	 being	 transparent.
Occurring	 380,000	 years	 after	 nucleosynthesis,	 this	 is	 known	 as	 the	 time	 of
recombination.10	It	is	a	key	moment	in	the	history	of	our	Universe	and	it	has	left
a	glorious	imprint	on	the	sky.

Figure	6.5	shows	three	snapshots	of	 the	history	of	 the	Universe.	 In	 the	first
frame,	we	trace	the	paths	of	photons	as	they	bounce	around	off	charged	particles



in	the	hot	plasma.	In	the	second	frame	we	have	wound	the	clock	forward	past	the
time	 of	 recombination:	 the	 photons	 are	 now	 travelling	 in	 straight	 lines.	 These
photons	carry	on	until	they	collide	with	something,	and–because	the	Universe	is
pretty	 empty	 and	 filled	 with	 an	 ever-diluting	 gas	 of	 neutral	 hydrogen	 and
helium–most	 of	 them	 keep	 on	 travelling	 until	 the	 present	 day.	 The	 last	 of	 the
three	 frames	 shows	 some	of	 these	ancient	photons	 arriving	at	Earth,	now.	The
possible	existence	of	 these	photons	 is	a	very	 striking	 idea.	 In	 the	words	of	 the
Princeton	physicists	Robert	Dicke,	Jim	Peebles,	Peter	Roll	and	David	Wilkinson,
back	 in	 1964:	 ‘Could	 the	 universe	 have	 been	 filled	with	 black-body	 radiation
from	[a]	possible	high-temperature	state?’



Figure	6.5	The	origin	of	the	Cosmic	Microwave	Background	(CMB)	radiation.



Dicke	and	his	colleagues	made	these	observations	having	just	heard	the	news
that,	 away	 at	 the	 Bell	 Laboratories	 in	 New	 Jersey,	 Arno	 Penzias	 and	 Robert
Wilson	 had	 detected	 an	 unexpected	 background	 of	 microwaves	 through	 a
telescope.	 The	 fact	 that	 the	 photons	 from	 the	Cosmic	Microwave	Background
(CMB)	should	today	be	observed	as	microwaves	is	exactly	as	expected,	because
the	expansion	of	space	since	the	time	of	recombination	redshifted	the	photons	to
microwave	wavelengths.	By	the	mid-1960s,	the	evidence	for	what	is	now	known
as	 the	 CMB	 had	 become	 compelling.	 The	 Earth,	 in	 other	 words,	 is	 bathed	 in
microwave	radiation	of	precisely	the	kind	anticipated	if	the	Universe	had	indeed
passed	through	a	hot	phase	before	the	formation	of	atoms.

Interestingly	enough,	 the	 idea	 that	 the	Universe	 should	 today	be	 filled	with
CMB	 radiation	 goes	 back	 decades	 before	 Penzias	 and	Wilson’s	 Nobel	 Prize-
winning	discovery.	In	1948,	in	a	tremendous	burst	of	creativity,	George	Gamow,
Ralph	Alpher,	Robert	Herman	and	Hans	Bethe	wrote	a	series	of	eleven	research
papers	 in	 which	 they	 developed	 the	 theory	 of	 Big	 Bang	 Nucleosynthesis.11
Gamow	and	colleagues’	ideas	were	ahead	of	their	time	and	lay	largely	dormant
until	the	discovery	of	the	CMB	in	1964.

The	 CMB	 and	 its	 properties	 have	 been,	 and	 continue	 to	 be,	 examined	 in
detail.	 This	 oldest	 light	 is	 a	 treasure	 trove	 of	 information,	 because	 it	 provides
earth-bound	 astronomers	 with	 an	 opportunity	 to	 garner	 information	 on	 what
happened	 shortly	 after	 the	 Big	 Bang.	We’ll	 be	 delving	 much	 further	 into	 the
treasures	 of	 the	CMB	 in	Chapter	 8,	 but	 for	 now	we	 are	going	 to	 focus	on	 the
broad	features	of	those	old,	stretched	photons	from	the	beginning	of	time,	which
we	now	detect	on	Earth	as	microwaves.

Figure	6.6	shows	a	measurement	of	the	CMB	made	in	the	early	1990s	by	the
Cosmic	Background	Explorer	 (COBE)	 satellite.	 It	 shows	 how	 the	microwaves
arriving	 at	 the	 Earth	 are	 distributed	 in	 wavelength.	 The	 height	 of	 the	 curve
measures	 the	 brightness	 of	 the	microwaves	 and	 the	 shape	 tells	 us	 how	 this	 is
distributed	 across	 different	 wavelengths.	 We	 see	 that	 the	 most	 commonly
occurring	wavelength	is	around	2	mm.	What	is	clear	from	the	graph	is	that	 the
measured	data	points	are	 in	perfect	agreement	with	 the	 theoretical	expectation,
which	is	the	smooth	solid	line.

That	smooth	line	is	the	result	of	a	calculation	originally	performed	in	the	late
nineteenth	 century	 by	 Max	 Planck,	 the	 brilliant	 German	 physicist	 who	 also
played	a	central	role	in	the	early	development	of	quantum	physics.	It	is	the	curve
corresponding	 to	 the	 spectrum	 of	 light	 emitted	 by	 an	 object	 cooled	 to	 a
temperature	of	2.73	kelvin,	which	 is	 just	over	minus	270	degrees	celsius.	This



amazing	 agreement	 between	 Max	 Planck’s	 calculation	 and	 the	 COBE
measurements	 is	 what	 Dicke	 and	 colleagues	 anticipated	 when	 they	 spoke	 of
‘black-body	radiation’.	Here,	the	technical	term	‘black-body’	is	used	to	describe
how	the	energy	of	a	gas	is	shared	out	between	its	component	particles	when	all
parts	 of	 the	 gas	 are	 at	 the	 same	 temperature.	 Because	 the	 CMB	 photons
originated	 from	 the	 primordial	 plasma,	 they	 ought	 to	 exhibit	 a	 near-perfect
black-body	spectrum,	and	this	is	exactly	what	was	seen	by	COBE.

Figure	6.6	The	COBE	measurement	of	the	Cosmic	Microwave	Background

radiation,	which	shows	that	the	Earth	is	bathed	in	microwaves	at	a

temperature	of	2.74	kelvin.

The	 predicted	 observation	 of	 a	 near-perfect	 black-body	 spectrum	 of
microwave	 radiation	 is	 our	 second,	 very	 compelling,	 piece	 of	 evidence	 in
support	of	the	Big	Bang.

In	 a	 nutshell,	 then,	 Big	 Bang	 Nucleosynthesis	 and	 the	 existence	 of	 the
Cosmic	Microwave	Background	provide	compelling	evidence	in	support	of	 the
idea	that	the	Universe	was	once,	long	ago,	in	a	hot,	dense	state.	However,	we	can
dare	to	go	much	further	because	Einstein’s	equations	are	also	able	to	provide	us
with	 a	 precise	 description	 of	 the	 evolution	 of	 the	 Universe,	 from	 its	 earliest



moments	to	the	distant	future,	if	we	can	measure	the	constituents	of	the	Universe
today.	In	order	to	do	this,	we	must	endeavour	to	weigh	the	Universe.



7.	WEIGHING	THE	UNIVERSE

We	now	 turn	 to	 the	 task	of	making	an	 inventory	of	 the	Universe.	We	want	 to
know	what	types	of	matter	exist	in	it	and	in	what	proportions,	how	much	energy
is	 carried	 by	 electromagnetic	 waves,	 and	 whether	 there	 is	 anything	 else	 out
there–anything	that	is	especially	hard	to	detect.	This	inventory	is	crucial	because
Friedmann’s	 equation	 tells	 us	 precisely	 how	 these	 different	 sorts	 of	 material
contribute,	via	 their	gravitational	effects,	 to	 the	expansion	of	 the	Universe.	We
will	be	able	to	compute	how	the	scale	factor	has	changed	with	time,	and	how	it
will	change	in	the	future.	This	will	tell	us	precisely	when	the	Big	Bang	happened
and	what	the	future	holds;	will	the	Universe	expand	for	ever	or	will	it	eventually
collapse?	 Answering	 these	 two	momentous	 questions	 will	 in	 turn	 allow	 us	 to
identify	 which	 of	 Robertson’s	 imagined	 universes	 we	 actually	 live	 in.
Understanding	 the	history	of	 the	 expansion	of	 the	Universe	 is	 now	our	 focus–
but,	as	is	so	often	the	case	in	science,	we	will	encounter	some	surprises	along	the
way.

We	described	the	Friedmann	equation	in	Box	10	(pp.	144–5),	and	it’s	worth	a
look	 now	 if	 you	 haven’t	 already	 done	 so.	 You	 don’t	 have	 to	 understand	 the
equation	 in	 order	 to	 understand	 the	 rest	 of	 this	 chapter.	 All	 you	 need	 to
appreciate	is	that	the	precise	way	in	which	the	Universe	expands	is	determined
by	the	type	and	amount	of	stuff	it	contains.

From	 the	 observation	 that	 the	Cosmic	Microwave	Background	 (CMB)	 is	 a
gas	of	photons	at	a	temperature	of	2.73	kelvin,	we	can	use	some	undergraduate-
level	 statistical	 mechanics	 to	 deduce	 that,	 today,	 there	 are	 an	 average	 of	 410
CMB	photons	 in	every	cubic	centimetre	of	 space.	 In	 turn,	 this	 implies	 that	 the
total	energy	carried	by	these	photons	is	just	over	40	millionths	of	a	joule	inside
each	1	kilometre	cube	(4	×	10−14	J/m3).	This	is	a	tiny	energy	density	by	everyday
standards:	a	10	watt	light	bulb	emits	10	joules	of	light	energy	every	second.1	The
gravitational	influence	of	this	energy	density	is	such	that	it	tends	to	slow	down
the	rate	at	which	the	Universe	is	expanding.

For	 accounting	 purposes,	 we	 will	 convert	 this	 energy	 density	 into	 mass
density,	 by	 dividing	 by	 the	 speed	 of	 light	 squared:	 doing	 this	 gives	 a	 mass



density	equal	to	4.5	×	10−31	kg/m3.	The	meaning	of	an	average	mass	density	is
clear	for	particles	that	actually	do	have	mass	(like	protons	or	electrons):	we	just
need	to	count	up	the	total	mass	of	particles	inside	some	region	of	space	and	then
divide	 by	 the	 volume	 of	 that	 region.	 Photons	 are	 different	 in	 that	 they	 carry
energy	 but	 do	 not	 have	 any	 mass.	 This	 peculiarity	 is	 a	 feature	 of	 Einstein’s
Special	Theory	of	Relativity,	 the	details	of	which	are	unimportant	here:	all	we
need	to	know	is	that	the	energy	carried	by	the	photons	has	a	gravitational	impact
on	 how	 the	 Universe	 evolves,	 and	 that	 its	 impact	 can	 be	 quantified	 by	 a
contribution	to	the	total	mass	density2	of	the	Universe	that	is	today	equal	to	4.5	×
10−31	kg/m3.

As	we	saw	in	Figure	5.8,	there	are	three	possibilities	for	the	geometry	of	the
Universe	under	the	assumption	that	matter	and	energy	are	evenly	distributed	(we
called	this	a	homogeneous	and	isotropic	Universe).	If	the	average	mass	density
is	 precisely	 equal	 to	 a	 very	 special	 value,	 known	 as	 the	 critical	 density,	 the
Friedmann	 equation	 tells	 us	 that	 space	 is	 flat.	 If	 the	 average	 mass	 density
exceeds	the	critical	density	then	the	Universe	curves	into	a	spherical	geometry,
and	 if	 it	 is	smaller	 than	 the	critical	density	 then	 the	Universe	 is	hyperbolic.3	 If
we	take	the	value	of	the	Hubble	constant	that	we	obtained	from	our	analysis	of
spiral	galaxies,	H	=	70	km/s/Mpc,	 then	 the	critical	density	 is	9	×	10−27	kg/m3.
There’s	 a	 nice	way	 to	 think	 about	 this,	 because	 a	 proton	weighs	 in	 at	 1.67	 ×
10−27	kg:	the	critical	density	corresponds	to	an	average	of	just	over	5	protons	in
every	cubic	metre	of	 space	 (there’s	nothing	special	about	using	protons	 in	 this
comparison:	it	is	like	saying	that	a	typical	Asian	bull	elephant	has	a	mass	equal
to	that	of	around	30	human	beings).	As	it	stands,	the	photons	account	for	far	less
than	 the	 critical	 density,	 which	 means	 that	 if	 there	 was	 nothing	 else	 in	 the
Universe	 besides	 photons	 we	 would	 be	 living	 in	 a	 Universe	 with	 hyperbolic
geometry,	which	would	go	on	expanding	for	ever.	But,	of	course,	the	Universe	is
made	of	more	than	just	light.

Because	 we	 know	 how	 much	 energy	 in	 the	 Universe	 is	 carried	 by	 the
photons,	we	can	immediately	deduce	how	much	is	carried	by	neutrinos.	This	is
because	 in	 the	 seconds-old	 Universe	 the	 neutrinos	 and	 photons	 were	 both
bouncing	around	at	the	same	temperature,	together	with	the	rest	of	the	particles
in	the	Universe.	The	neutrino	energy	density	is	slightly	less	than	that	due	to	the
photons,	for	reasons	we	describe	in	Box	12	(p.	184).	Together,	the	neutrinos	and
photons	 account	 for	 a	 present-day	mass	 density	 of	 approximately	 7.5	 ×	 10−31
kg/m3.

We	noted	in	the	last	chapter	that	the	Big	Bang	Nucleosynthesis	calculations



agree	with	the	observed	data	only	if	there	are	1.7	billion	photons	in	the	Universe
today	 for	 every	 proton	 or	 neutron.	 From	 our	 study	 of	 the	CMB,	we	 have	 just
discovered	that	there	are	410	photons	in	every	cubic	centimetre	of	space.	Taken
together,	 these	 pieces	 of	 information	 mean	 that,	 on	 average,	 there	 should	 be
approximately	 1	 proton	 or	 neutron	 in	 every	 four	 cubic	metres	 of	 space.	Now,
protons	 and	 neutrons	 should	 dominate	 the	 mass	 in	 the	 Universe	 arising	 from
ordinary	matter,	because	they	are	each	around	2000	times	heavier	than	the	only
other	 ordinary	 matter	 particle;	 the	 electron.4	 Suddenly,	 we	 find	 ourselves
arriving	at	a	prediction:	the	matter	in	the	Universe	out	of	which	every	star,	gas
cloud	and	galaxy	is	made,	should	amount	to	a	grand	total	of	4	×	10-28	kg/m3.	If
this	 is	 not	 found	 to	 be	 the	 case	 then	 the	 Big	 Bang	 theory	 we	 have	 been
describing	will	fail.

This	is	pretty	impressive	stuff:	we	are	laying	claim	to	knowing	precisely	how
many	photons,	neutrinos,	protons,	neutrons	and	electrons	are	present	on	average
in	every	cubic	metre	of	 the	Universe	 today.	Moreover,	we	claim	 to	know	how
those	protons	and	neutrons	combined	to	make	hydrogen,	deuterium	and	helium
with	a	smidgeon	of	lithium.	These	are	the	ingredients	that	have	clumped	together
to	make	everything	we	are	familiar	with.	Of	course,	we	would	love	to	be	able	to
corroborate	these	numbers	using	some	entirely	different	piece	of	science,	and	it
is	 one	 of	 the	 highlights	 of	 modern	 cosmology	 that–as	 we’ll	 see	 in	 the	 next
chapter–we	are	able	to	do	so.	For	now,	we	must	press	on,	because	there	there	is
more	to	the	Universe	than	just	light	and	ordinary	matter.

BOX	12.	THE	ENERGY	DENSITY	OF	NEUTRINOS

As	 the	 Universe	 cooled,	 neutrinos	 stopped	 interacting	 with
everything	else	before	photons	did	because	the	weak	nuclear	force
acts	 over	 much	 shorter	 distances	 than	 the	 electromagnetic	 force
does.	 So,	 as	 the	 Universe	 expanded,	 it	 became	 sufficiently	 dilute
that	 the	 neutrinos	 no	 longer	 had	 the	 opportunity	 to	 interact.	 This
happened	at	a	temperature	of	around	10	billion	kelvin,	around	10−5

seconds	after	 the	Big	Bang.	Even	 though	 they	stopped	 interacting,
the	temperature	of	the	neutrinos	fell	as	the	Universe	expanded,	just
as	 the	 photon	 temperature	 fell.	 Today,	 the	 neutrino	 temperature	 is
slightly	 less	 than	 the	 photon	 temperature	 because,	 after	 the



neutrinos	stopped	 interacting,	 the	photon	gas	got	heated	up	a	 little
bit	as	a	result	of	a	process	called	electron-positron	annihilation.	This
is	the	process	by	which	an	electron	encounters	a	positron	(an	anti-
matter	 electron)	 and	 both	 disappear,	 to	 be	 replaced	 by	 two
photons.1	 In	 this	 way,	 some	 extra	 photons	 were	 produced	 which
heated	up	the	photons	a	little	bit	compared	to	the	neutrinos.	If	you’re
wondering	how	 the	photons	and	neutrinos	could	have	 two	different
temperatures,	 then	 bear	 in	 mind	 that	 this	 is	 possible	 because	 the
neutrinos	 have	 effectively	 stopped	 interacting	 with	 anything,	 which
means	 that	 there	 is	 then	no	way	 for	 them	to	share	energy	with	 the
other	 particles	 in	 the	 Universe.	 The	 result	 is	 that	 the	 primordial
neutrino	 temperature	 today	 is	 slightly	 less	 than	 2	 kelvin.	 The
neutrinos	 form	 a	 Cosmic	 Neutrino	 Background	 on	 the	 sky,	 at	 a
redshift	of	around	1010,	and	it	would	be	fantastic	to	be	able	to	build	a
detector	 to	 see	 it.	 Unfortunately,	 that	 is	 way	 beyond	 current
capabilities.

The	earliest	strong	evidence	that	 there	is	some	other	form	of	matter	beyond
that	 visible	 through	 telescopes	 was	 presented	 way	 back	 in	 1933,	 in	 a	 paper
written	by	the	Swiss	astronomer	Fritz	Zwicky.	He	noticed	that	the	galaxies	in	the
Coma	galaxy	cluster5	were	moving	much	faster	than	expected.	The	galaxies	that
make	up	a	cluster	are	in	orbit	around	each	other	due	to	their	mutual	gravitational
attraction,	just	as	the	Earth	orbits	the	Sun,	except	that	the	distances	involved	are
vastly	greater:	 typically	 the	galaxies	 are	 a	 few	million	 light	years	 apart.	Using
Newton’s	laws,	we	can	estimate	the	total	mass	of	the	cluster	if	we	know	how	fast
each	 galaxy	 is	moving.	 This	 is	 rather	 like	 the	 example	we	 encountered	 in	 the
previous	chapter	when	we	discussed	 the	Tully-Fisher	 relation	for	stars	orbiting
around	 a	 galaxy.	 It’s	 also	 similar	 to	 the	way	we	 inferred	 the	mass	 of	 the	 Sun
using	Newton’s	laws	and	observations	of	the	planetary	orbits	in	Chapter	3.	If	we
replace	the	word	‘star’	by	‘galaxy’	and	‘galaxy’	by	‘cluster’	in	Box	11	(p.	151),
we	 can	 deduce	 the	 speed	 of	 an	 average	 galaxy	 in	 a	 cluster	 by	 observing	 the
Doppler	shift	of	the	light	it	emits.	Once	we	have	the	speed	of	the	galaxy,	we	can
estimate	the	mass	of	 the	cluster.	Zwicky	discovered	that	 the	mass	of	 the	Coma
cluster	is	far	bigger	than	can	be	accounted	for	by	its	visible	contents.	The	light
emitted	by	 the	cluster	 is	 roughly	equivalent	 to	 that	emitted	by	30	 trillion	suns,
while	the	inferred	mass	is	equivalent	to	that	of	4500	trillion	suns.	That	is	quite	a



difference.
Astronomers	 speak	 of	 the	 ‘mass-to-light	 ratio’,	 which	 is	 the	 total	 mass

divided	 by	 the	 total	 light	 output.	 In	 the	 case	 of	 the	 Coma	 cluster,	 this	 is
approximately	 4500/30	=	 150.	Our	Sun	 has	 a	mass-to-light	 ratio	 of	 1	 in	 these
units.6	Such	a	large	mass-to-light	ratio	immediately	tells	us	that	most	of	the	mass
of	the	Coma	cluster	is	not	located	in	stuff	that	emits	light.	It	is	natural	to	suppose
that	this	might	be	in	the	form	of	dark	objects	like	dead	stars	or	black	holes,	but
we	will	see	in	a	moment	that	this	cannot	be	the	whole	story.	Whatever	the	case,
there	is	a	lot	of	dark	material	to	account	for–and	this	was	a	surprise	to	Zwicky.
What’s	more,	we	now	know	that	there	is	nothing	special	about	the	Coma	cluster.
The	largest	clusters	have	mass-to-light	ratios	of	around	250.

The	 mass-to-light	 ratio	 is	 a	 particularly	 valuable	 number.	 If	 we	 know	 its
value	averaged	across	the	entire	Universe	we	can	use	it	in	conjunction	with	the
measurement	 of	 the	 average	 luminosity	 of	 space	 to	 infer	 the	 average	 mass
density	 of	 space.	 The	 average	 luminosity	 of	 space	 corresponds	 to	 130	million
suns	per	cubic	megaparsec.	So,	if	the	mass-to-light	ratio	for	the	Universe	is	250,
it	follows	that	the	matter	density	is	equivalent	to	250	×	130	million	suns	inside
each	1	Mpc	cube.	Given	that	our	Sun	has	a	mass	of	2	×	1030	kg,	 this	gives	an
average	matter	density	of	22	×	10−28	kg/m3.	You	may	reasonably	object	that	the
mass-to-light	ratio	of	a	cluster	of	galaxies	is	not	the	same	thing	as	the	mass-to-
light	 ratio	of	 the	Universe	 at	 large,	which	we	 cannot	measure	directly.	This	 is
true:	 indeed,	 for	 our	 solar	 system	 the	 mass-to-light	 ratio	 is	 very	 close	 to	 1,
because	 the	 Sun	 carries	 most	 of	 the	 mass	 and	 gives	 off	 most	 of	 the	 light.
Conversely,	 in	 the	vicinity	of	a	black	hole	or	dead	star,	 the	mass	 to	 light	 ratio
will	be	very	large	because	there	is	a	lot	of	mass	but	not	much	light.	However,	the
larger	 the	 region	 of	 space	 over	 which	 we	 average,	 the	 more	 we	 expect	 it	 to
approximate	 the	 behaviour	 of	 the	Universe	 at	 large,	 so	 by	 looking	 at	 the	 very
largest	 galaxy	 clusters	 we	 expect	 to	 obtain	 a	 decent	 estimate	 of	 the	 average
mass-to-light	ratio	of	the	Universe.

A	mass	 density	 of	 22	 ×	 10−28	 kg/m3	 is	 more	 than	 5	 times	 larger	 than	 the
number	we	determined	 for	 the	mass	density	of	 ordinary	matter,	which	 implies
that	 the	 material	 content	 of	 the	 Universe	 is	 predominantly	 composed	 of
something	 other	 than	 the	 products	 of	 Big	 Bang	 Nucleosynthesis.	 This	 is
important	because	 it	 removes	 the	possibility	 that	 the	unseen	matter	might	arise
from	 dead	 stars	 or	 black	 holes	 or	 other	 non-luminous	 stuff	made	 from	 atoms,
because	 the	 mass	 density	 of	 ordinary	 matter	 that	 we	 estimated	 from	 the	 Big
Bang	Nucleosynthesis	was	not	just	restricted	to	the	matter	that	we	can	see.	We



call	this	new	stuff	dark	matter.

Figure	7.1	The	Bullet	Cluster	shows	how	the	hot	gas	(red)	is	displaced	from

the	majority	of	the	mass	inferred	from	gravitational	lensing	(blue).

This	 is,	 of	 course,	 a	 rather	 bold	 conclusion	 to	 draw.	 We	 seem	 to	 have
invented	a	new	form	of	matter	simply	because	our	calculations	and	observations
don’t	match.	This	would	be	a	valid	criticism	if	it	weren’t	for	the	fact	that	there
are	 many	 other	 ways	 of	 measuring	 the	 amount	 of	 matter	 contained	 within
galaxies	and	galaxy	clusters–and	they	all	give	the	same	result.	During	the	1970s,
a	 series	 of	 observations	 pioneered	 by	 the	 American	 astronomer	 Vera	 Rubin
revealed	that,	for	very	many	galaxies,	stars	and	gas	are	orbiting	much	faster	than
would	be	expected	if	the	only	mass	in	the	galaxy	were	luminous.	The	physics	is
the	same	as	for	galaxy	clusters–except	here	it	is	stars,	rather	than	entire	galaxies,
that	appear	to	be	moving	too	fast.	Analysis	of	Rubin’s	‘galaxy	rotation	curves’
indicates	that	as	much	as	90%	of	the	mass	in	a	galaxy	is	not	luminous,	and	until
quite	recently	this	was	the	principal	evidence	for	dark	matter.

The	 most	 dramatic	 evidence	 for	 the	 existence	 of	 dark	 matter	 comes	 from



observations	 of	 the	 aftermath	 of	 a	 violent	 cosmic	 collision,	 as	 two	 clusters	 of
galaxies	ploughed	 through	each	other	at	 several	million	miles	per	hour.	Figure
7.1	 shows	 several	 images	 of	 what	 is	 now	 known	 as	 the	 ‘Bullet	 Cluster’
superimposed	on	top	of	each	other.	The	background	is	a	composite	image	taken
in	 visible	 light	 by	 the	 6.5	metre	Magellan	 telescopes	 in	Chile	 and	 the	Hubble
Space	Telescope.	The	red	clumps	are	an	image	of	the	same	system	taken	by	the
Chandra	 X-ray	 observatory	 and	 they	 show	 where	 the	 hot	 gas	 resides	 (by
detecting	 the	X-rays	 they	 emit).	 In	 the	Bullet	Cluster,	 this	 gas	 is	 glowing	 at	 a
temperature	of	around	100	million	degrees.	The	blue	clumps	show	the	location
of	 the	majority	of	 the	mass	 in	 the	cluster,	 inferred	using	a	 technique	known	as
gravitational	lensing,	an	ingenious	application	of	General	Relativity.	Space	and
time	are	distorted	by	the	presence	of	the	matter	in	the	Bullet	Cluster.	This	means
that	the	image	of	anything	behind	the	Bullet	Cluster,	as	viewed	from	Earth,	will
be	distorted	because	the	light	has	to	pass	through	the	distorted	spacetime	on	its
way	to	us.	Figure	7.2	shows	a	more	dramatic	example	of	gravitational	 lensing.
The	galaxy	cluster	Abell	2218	is	distorting	the	images	of	more	distant	galaxies
lying	 behind	 it,	 which	 are	 visible	 as	 smeared-out	 arcs	 of	 light.	 The	 effect	 is
rather	like	viewing	something	through	the	bottom	of	a	wine	glass.	Just	as	we	can
infer	the	shape	of	a	wine	glass	from	the	way	it	distorts	an	image,	so	we	can	infer
the	shape	of	spacetime	by	the	way	it	distorts	an	image.	General	Relativity,	then,
allows	 us	 to	 determine	 the	 distribution	 of	 matter	 in	 the	 intervening	 galaxy
cluster,	because	it	 tells	us	what	distribution	is	necessary	to	distort	spacetime	in
the	 required	 way.	 Incidentally,	 the	 masses	 of	 galaxy	 clusters	 can	 also	 be
determined	using	gravitational	 lensing,	and	the	results	agree	very	well	with	the
masses	 inferred	 using	 the	 orbital	 speeds	 of	 their	 constituent	 galaxies	 in	 the
manner	 first	 used	 by	 Zwicky	 in	 the	 1930s.	 As	 ever,	 it	 is	 good	 to	 be	 able	 to
measure	the	same	thing	in	different	ways.

It	is	immediately	obvious	from	Figure	7.1	that	the	majority	of	the	mass	in	the
Bullet	Cluster	 is	not	 in	 the	vicinity	of	 the	hot	gas.	This	 is	 inexplicable	without
invoking	dark	matter,	because	the	bulk	of	the	mass	that	we	can	see	is	located	in
the	vicinity	of	the	hot	gas–meaning	that,	unless	dark	matter	is	present,	the	blue
and	red	regions	should	lie	on	top	of	each	other.7	Clearly,	the	rightmost	cluster	of
galaxies	has	ploughed	its	way	from	left	to	right:	you	can	see	the	shockwave	of
X-rays	lying	in	its	wake.	During	the	collision,	the	hot	gas	of	charged	particles	in
each	 cluster	 was	 slowed	 down,	 which	 is	 expected	 because	 the	 hot	 gas	 is
composed	of	 electrically	charged	particles	 that	 interact	 strongly	and	 scatter	off
each	other.	By	contrast,	most	of	the	mass	in	the	clusters	was	evidently	much	less



affected	by	the	collision.	Indeed	it	hardly	seems	to	have	felt	the	collision	at	all;	it
has	 continued	 on	 its	 journey	 through	 space,	 passing	 straight	 through	 another
galaxy	 cluster	 at	 over	 a	 million	 miles	 an	 hour.	 The	 collision	 has	 caused	 the
majority	 of	 the	 ordinary	 matter	 in	 the	 clusters,	 contained	 in	 the	 hot	 gas,	 to
become	 separated	 from	 the	majority	 of	 the	mass,	 which	 exists	 in	 the	 form	 of
weakly	interacting	dark	matter.

Figure	7.2	The	Hubble	Space	Telescope	image	of	the	Abell	2218	galaxy

cluster,	including	the	gravitationally	distorted	images	of	more	distant	objects

lying	behind	it.

Today,	 the	 existence	 of	 dark	 matter	 is	 very	 well	 established,	 although	 we
certainly	do	not	know	what	it	actually	is.	The	simplest	idea	would	be	to	suppose
that	 there	 is	 a	 new	 type	 of	 particle,	which	 hasn’t	 been	 observed	 on	Earth	 yet.
This	 is	 a	 very	 reasonable	 possibility:	 it	 would	 be	 verging	 on	 the	 arrogant	 to
suppose	that	the	only	particles	that	exist	are	those	we	have	already	observed.	As
we	have	seen,	 the	dark	matter	only	appears	 to	 interact	appreciably	via	gravity,
which	is	why	it	is	dark.	It	could	conceivably	have	some	weak,	non-gravitational
interaction	 with	 other	 particles,	 which	 might	 make	 it	 possible	 to	 eventually
produce	and/or	detect	it	in	particle	physics	laboratories	on	Earth.	That	possibility
has	been	considered	very	seriously,	not	least	because	some	of	the	more	popular



ideas	 in	 particle	 physics	 do	 predict	 the	 existence	 of	 just	 such	 a	 dark	 matter
particle,	 and	 those	 ideas	 do	 not	 draw	 on	 any	motivation	 from	 astronomy	 and
cosmology.	As	we	will	see	in	the	next	chapter,	dark	matter	can	also	be	inferred
from	the	way	that	galaxies	clump	together	across	 the	entire	Universe	and	from
an	analysis	of	the	fine	details	of	the	Cosmic	Microwave	Background.

Now	is	a	good	time	to	pause	for	breath	and	recap	where	we	are	in	our	quest
to	pin	down	the	material	contents	of	the	Universe.	We	have	worked	out	that,	at
the	present	time:

(i)	photons	and	neutrinos	give	 rise	 to	an	average	mass	density	of	7.5	×
10−31	kg/m3;

(ii)	there	are	approximately	4	×	10−28	kg/m3	of	ordinary	matter,	which	is
made	up	of	atomic	nuclei	and	electrons;

(iii)	the	sum	total	of	the	dark	matter	and	the	ordinary	matter	averages	to
22	×	10−28	kg/m3,	which	means	that	the	dark	matter	alone	contributes
around	18	×	10−28	kg/m3.

Because	the	sum	total	of	these	mass	densities	is	about	30%	of	the	critical	density
(9	×	10−27	 kg/m3),	 the	possibility	 that	we	 live	 in	a	hyperbolic	Universe	 is	 still
looming.	However,	 there	 is	something	very	curious	 to	note:	 the	critical	density
corresponds	to	around	5	protons	per	cubic	metre,	while	the	sum	total	of	the	dark
and	ordinary	matter	checks	in	around	1.5	protons	per	cubic	metre.	Why	are	these
numbers	 so	 similar?	 Without	 any	 prior	 bias,	 we	 would	 have	 had	 no	 trouble
imagining	 that	 these	 numbers	might	 be	wildly	 different:	 a	 trillion	 protons	 per
cubic	metre,	for	example,	or	maybe	one	proton	every	megaparsec.	The	fact	that
the	observed	density	is	so	close	to	the	critical	density	smacks	of	coincidence–or
perhaps	 it	 is	a	clue.	Whatever	 the	case,	 it	 certainly	means	 that	our	Universe	 is
not	so	far	from	being	flat.

This	apparent	coincidence	is	all	the	more	surprising	because,	according	to	the
Friedmann	 equation,	 the	 difference	 between	 the	matter	 density	 and	 the	 critical
density	 ought	 to	 get	 bigger	 as	 time	 passes.8	 This	means	 that	 if	 the	 density	 is
close	to	critical	now,	which	it	is,	then	it	must	have	been	even	closer	to	critical	in
the	past.	This	is	an	example	of	what	physicists	call	a	‘fine	tuning’	problem.	It	is
as	 if	 the	matter	density	 in	 the	Universe	was	adjusted	very	precisely	at	 the	Big
Bang	in	order	to	give	rise	to	the	Universe	we	see	today.	To	put	it	another	way,
for	 us	 to	 find	 ourselves	 in	 a	 nearly	 flat	 Universe	 now,	 space	must	 have	 been



‘unfeasibly	 close	 to	 flat’	 at	 the	 Big	 Bang.	 Cosmologists	 refer	 to	 this	 as	 ‘the
flatness	problem’.

Many	cosmologists	would	much	rather	contemplate	a	perfectly	flat	Universe
in	which	the	density	is	equal	to	the	critical	density	than	a	nearly	flat	one.	At	first
sight,	this	might	sound	like	a	prejudice;	why	would	a	scientist	be	happy	with	a
Universe	of	precisely	the	critical	density	rather	than	30%	of	it?	The	explanation
for	the	apparent	prejudice	is	that	there	is	a	very	simple	reason	why	the	Universe
might	appear	to	be	flat.	Specifically,	even	a	curved	universe	would	appear	flat	if
it	is	sufficiently	big.

The	 link	 between	 flatness	 and	 the	 size	 of	 the	Universe	 is	 easy	 to	 grasp.	A
person	restricted	to	roam	over	a	small	portion	of	the	Earth’s	surface	could	easily
be	fooled	into	thinking	that	the	Earth	is	flat	simply	because	it	is	big.	Likewise,	if
we	are	doing	our	astronomy	in	a	small	portion	of	a	vastly	bigger	Universe,	then
we	could	easily	be	drawn	to	conclude	that	it	is	flat.	You	can	see	this	idea	at	play
in	the	Friedmann	equation	(take	a	look	at	Box	10	again):	making	R	larger	has	the
effect	 of	making	 the	 term	 that	 depends	on	 the	geometry	of	 space	 smaller,	 and
one	can	imagine	it	being	so	large	as	to	make	its	effect	irrelevant.	In	that	case,	the
Universe	would	 appear	 flat	 even	 though	 it	 isn’t	 flat	 on	 the	 largest	 scales.	The
question	 of	 why	 the	 density	 of	 the	 Universe	 should	 be	 close	 to	 the	 critical
density	 then	gets	 replaced	with	 the	question	of	why	 the	Universe	 is	so	big.	As
we’ve	suggested	in	Chapter	1,	a	huge	Universe	is	the	natural	consequence	of	the
theory	 of	 inflation.	 Perhaps	 you	 now	 see	 the	 reason	why	 a	 cosmologist	might
prefer	to	suppose	that	we	live	in	a	very	flat	Universe,	whose	mass	density	is	very
close	 to	 the	 critical	 density,	 rather	 than	 one	 where	 it	 is	 30%	 of	 the	 critical
density.	In	the	super-flat	case,	the	task	is	‘simply’	to	find	a	theory	(like	inflation)
that	delivers	a	Universe	that	is	vastly	bigger	than	the	observable	Universe.	This
is	rather	easier	to	contemplate	than	trying	to	find	a	theory	that	delivers	a	‘just	so’
Universe,	where	 the	 radius	R	 just	 happens	 to	 be	 roughly	 the	 same	 size	 as	 the
observable	 Universe.	 Obviously,	 the	 trouble	 with	 supposing	 that	 we	 live	 in	 a
very	flat	Universe	instead	of	a	nearly	flat	one	is	that	we	need	to	account	for	the
missing	 70%	 of	 the	mass	 density.	 Remarkably,	 the	 theoretical	 prejudice	 for	 a
very	flat	Universe	appears	to	be	correct,	although	the	evidence	to	prove	it	comes
from	 a	 quite	 unexpected	 direction:	 towards	 the	 end	 of	 the	 twentieth	 century,
Einstein’s	cosmological	constant	rose	phoenix-like	from	the	ashes.



Figure	7.3	(left)	M3	is	one	of	the	brightest	globular	clusters	in	the	sky.	At	a
distance	of	over	30	thousand	light	years,	it	is	visible	in	the	northern

hemisphere	using	binoculars	and	contains	around	half	a	million	stars;	(right)
The	Omega	Centauri	Globular	Cluster,	the	largest	globular	cluster	in	the	Milky

Way.



We	met	the	cosmological	constant	back	in	Chapter	5,	when	we	observed	that
Einstein	introduced	it	into	his	equations	of	General	Relativity	in	an	unsuccessful
attempt	to	construct	a	viable	model	of	a	non-expanding	universe.	After	Einstein
dismissed	it	as	his	greatest	blunder,	the	possibility	that	the	Universe	might	today
be	endowed	with	a	cosmological	constant	did	not	feature	high	on	the	priorities	of
most	cosmologists–not	until	the	1990s,	that	is.

The	Friedmann	equation	allows	us	to	calculate	the	age	of	the	Universe	(once
we	 know	 the	 average	 mass	 densities	 of	 the	 different	 types	 of	 matter	 and	 the
present-day	Hubble	 constant).	 The	 trouble	 is	 that	 a	 density	 of	matter	 equal	 to
only	30%	of	the	critical	density	and	a	Hubble	constant	of	70	km/s/Mpc	suggests
that	the	Universe	is	younger	than	some	of	its	contents,	which	is	obviously	a	bit
of	a	disaster.	The	problem	comes	from	the	dating	of	clusters	of	stars	known	as
globular	clusters.



Astronomers	 love	 globular	 clusters	 because	 they	 provide	 some	 of	 the	most
spectacular	sights	in	the	night	sky	that	can	be	viewed	through	a	small	telescope.
They	are	great	balls	of	stars,	and	are	numerous	in	the	Milky	Way.	The	left-hand
image	in	Figure	7.3	is	a	photograph	of	Messier	3	in	the	northern	constellation	of
Canes	Venatici.	 This	 picture	was	 taken	 by	 a	 friend	 of	 ours,	Bill	Chamberlain,
who	recently	took	up	astronomy	as	a	hobby	at	the	tender	age	of	70.	One	of	the
most	 spectacular	 and	 well-studied	 globular	 clusters	 is	 Omega	 Centauri,	 the
largest	 globular	 cluster	 in	 the	Milky	Way.	 It	 is	 only	 15,800	 light	 years	 away
from	Earth,	and	contains	ten	million	stars,	which	makes	it	a	bright	and	beautiful
object.	A	quite	stunning	photograph	of	Omega	Centauri,	taken	by	the	European
Southern	 Observatory’s	 La	 Silla	 Observatory,	 is	 also	 shown	 in	 Figure	 7.3.
Astronomers	can	determine	the	age	of	clusters	like	M3	by	studying	the	variation
in	colour	and	brightness	of	the	stars	that	make	up	the	cluster.	In	the	case	of	M3,
they	have	figured	out	that	it	is	around	11.4	billion	years	old.

To	 study	 systems	 of	 stars,	 astronomers	 arrange	 the	 stars	 into	 a	 diagram
according	to	their	colour	(which	is	directly	related	to	their	surface	temperature)
and	brightness.	These	are	known	as	Herzsprung-Russell	(HR)	diagrams:9	Figure
7.4	shows	 the	HR	diagrams	for	Omega	Centauri	 (right)	and	 the	Pleiades	(left).
These	 make	 for	 very	 pretty	 diagrams	 because	 the	 stars	 are	 obviously	 not
scattered	about	at	random.	In	the	case	of	the	Pleiades,	the	majority	of	the	stars	lie
on	the	same,	sweeping	curve,	with	the	hot,	blue	stars	being	the	brightest	and	the
cooler,	red	stars	being	the	dimmest.	This	curve	is	known	as	the	‘main	sequence’.
The	main	sequence	is	less	prominent	in	the	case	of	Omega	Centauri.	Instead,	the
pattern	of	stars	curves	back	on	itself,	indicating	that	Omega	Centauri	contains	a
significant	population	of	bright,	red	stars.	These	stars	are	known	as	red	giants.



Figure	7.4	Herzsprung-Russell	diagrams	can	be	used	to	date	star	clusters.

The	left	diagram	is	for	the	Pleiades	and	the	right	diagram	is	for	Omega

Centauri.



The	basic	physics	of	the	HR	diagram	is	simple	to	grasp.	Main	sequence	stars
like	 our	 Sun	 are	 busy	 fusing	 hydrogen	 into	 helium	 in	 their	 cores.	 The	 energy
released	in	these	fusion	reactions	creates	the	pressure	that	resists	the	inward	pull
of	gravity,	allowing	the	star	to	exist	in	a	stable	state	as	long	as	it	has	fuel	to	burn.
More	 massive	 stars	 have	 to	 generate	 more	 heat	 energy	 to	 create	 the	 higher
pressure	needed	to	resist	the	inward	pull	of	gravity;	they	are	therefore	hotter	and
bluer,	at	the	expense	of	having	to	burn	their	fuel	more	quickly.	In	contrast,	less
massive	stars	have	to	generate	less	energy,	and	are	therefore	dimmer,	redder	and
burn	their	fuel	more	slowly.	As	stars	run	out	of	hydrogen	fuel,	they	contract	and
their	cores	heat	up,	allowing	them	to	initiate	helium	burning.	This	is	how	some
of	 the	 heavier	 elements,	 including	 oxygen	 and	 carbon,	 are	made.	 Their	 super-
heated	cores	cause	the	outer	layers	of	the	star	to	expand	and	cool,	resulting	in	the
cool	but	bright	stars–red	giants–which	can	be	seen	towards	 the	 top	right	of	 the
HR	diagrams.	The	story	of	stellar	evolution,	then,	is	laid	out	on	an	HR	diagram.
For	us,	the	key	observation	is	that	when	a	star	runs	out	of	hydrogen	fuel	it	will
move	off	the	main	sequence	and	onto	the	red	giant	branch,	which	is	much	more



prominent	in	the	case	of	Omega	Centauri	than	it	is	in	the	Pleiades.
Bright	 blue-white	 stars	will	move	 off	 the	main	 sequence	 first,	 followed	 by

yellow	stars	 like	our	Sun,	 leaving	only	 the	very	 long-lived	dim	red	dwarf	stars
behind:	 these	have	enough	 fuel	 to	carry	on	shining	 for	many	 times	 the	current
age	of	 the	Universe.	In	a	relatively	short	 time,	 the	red	giants	will	exhaust	 their
fusion	fuel	completely,	at	which	point	their	cores	will	collapse	into	either	a	white
dwarf	or,	for	the	most	massive	stars,	a	neutron	star	or	a	black	hole.	White	dwarfs
are	dim,	blue-white	stellar	remnants,	and	sit	in	the	lower	left	of	the	HR	diagram.
Perhaps	you	can	now	see	how	an	HR	diagram	might	allow	astronomers	to	date	a
star	cluster.	Older	clusters	will	contain	a	larger	number	of	red	giants	and	white
dwarfs,	and	fewer	stars	on	the	main	sequence;	whereas,	for	very	young	clusters,
all	the	stars	will	still	be	on	the	main	sequence	and	there	will	be	no	red	giants.

With	 only	 this	 information,	 it	 is	 clear	 that	 the	 Pleiades	 is	 significantly
younger	 than	 Omega	 Centauri	 because	 it	 contains	 no	 red	 giants,	 and	 a	 large
population	of	young,	bright	blue	stars;	meanwhile,	red	dwarves,	red	giants	and	a
smattering	of	white	dwarves	are	common	in	Omega	Centauri.	Astronomers	can
do	much	 better	 than	 simply	 determining	 the	 relative	 ages	 of	 clusters,	 because
they	understand	stellar	evolution.	In	Chapter	2,	we	worked	out	the	age	of	the	Sun
using	our	knowledge	of	nuclear	physics,	and	we	can	do	the	same	with	the	stars
in	clusters.	If	you	look	at	the	HR	diagram	for	Omega	Centauri,	for	example,	you
see	that	there	are	no	yellow	Sun-like	stars	left	on	the	main	sequence.	Because	we
know	that	yellow	main-sequence	stars	like	our	Sun	have	a	lifetime	of	around	10
billion	years,	this	must	mean	that	Omega	Centauri	is	older	than	10	billion	years;
it	is,	in	fact,	11.5	billion	years	old.

This	 age	 is	 interesting	 because	 it	 is	 marginally	 older	 than	 the	 age	 of	 a
universe	 that	 is	 currently	 expanding	 at	 70	 km/s/Mpc	 and	 contains	 only	matter
with	 a	 density	 equal	 to	 30%	 of	 the	 critical	 density–using	 the	 Friedmann
equation,	such	a	universe	would	be	11.3	billion	years	old.	The	problem	is	even
more	serious	because	there	are	other	globular	clusters	that	have	ages	in	excess	of
12	billion	years.	At	a	stroke,	the	globular	cluster	age	problem	can	be	solved	by
supposing	 that	 the	 Universe	 is	 endowed	with	 a	 cosmological	 constant,	 whose
size	 corresponds	 to	 a	mass	 density	 equal	 to	 70%	 of	 the	 critical	mass	 density.
This	has	the	twin	advantages	of	increasing	the	predicted	age	of	the	Universe	to
closer	to	14	billion	years	and	increasing	the	total	mass	density	to	100%–as	befits
a	 flat	 Universe.	 By	 the	 mid-1990s	 other	 data,	 such	 as	 that	 coming	 from	 the
theory	of	galaxy	formation	that	we	will	encounter	in	the	next	chapter,	was	also
encouraging	cosmologists	to	take	seriously	the	possibility	that	there	might	be	a



cosmological	 constant	 after	 all.	 However,	 for	 many	 cosmologists	 the	 balance
finally	tipped	in	favour	of	the	existence	of	a	cosmological	constant	in	1998.

In	that	year,	two	teams	of	astronomers	presented	their	results	on	the	redshift-
distance	 relationship	 for	 Type	 1A	 supernovae.	 In	 other	 words,	 they	 made	 a
Hubble	 plot	 just	 like	 we	 did	 to	 measure	 the	 current	 expansion	 rate	 of	 the
Universe	in	the	last	chapter,	but	instead	of	using	spiral	galaxies	the	astronomers
used	 Type	 1A	 supernovae.	 Recall	 that	 these	 exploding	 stars	 are	 especially
valuable	to	astronomers	because	they	all	explode	in	the	same	way,	which	means
we	can	measure	how	far	away	they	are	using	their	observed	brightness.	Because
supernovae	can	be	seen	at	very	large	distances,	they	can	be	used	to	observe	how
the	Universe	 has	 been	 expanding	 over	 the	 past	 few	billion	 years,	which	 is	 far
better	than	we	managed	using	spiral	galaxies.

The	Supernova	Cosmology	Project	and	the	High-Z	Supernova	Search	Team
published	their	observations	after	several	years	of	collecting	data	on	a	few	tens
of	 supernovae.	 They	 found,	 independently,	 that	 most	 distant	 supernovae	 were
significantly	dimmer	than	expected,	which	is	to	say	that	they	were	further	away
than	they	should	be	in	a	universe	dominated	by	matter	alone.	The	best	fit	to	the
data	in	fact	suggested	that	the	Universe	is	not	decelerating	but	accelerating	in	its
expansion.	 In	 a	 universe	 containing	 only	 ordinary	 and	 dark	 matter,	 the
gravitational	 attraction	 of	 the	 matter	 tends	 to	 cause	 the	 expansion	 rate	 to
gradually	slow	down,	so	deceleration	would	be	the	norm–an	accelerated	rate	of
expansion	 is	 the	hallmark	of	a	cosmological	constant.	Without	doubt,	 the	most
remarkable	aspect	of	the	supernovae	measurements	is	that	they	can	be	explained
if	 the	mass	density	associated	with	a	cosmological	constant	 is	equal	 to	70%	of
the	critical	density.	In	other	words,	the	Universe	really	does	appear	to	be	flat–the
theoretical	hunch	was	right.

The	cosmological	constant	now	often	goes	by	the	name	of	dark	energy.	The
more	mystical-sounding	name	is	suggestive	of	the	possibility	that	there	might	be
a	deeper	explanation	for	what	causes	the	accelerated	expansion	of	the	Universe–
perhaps	 something	 exists	 that	 mimics	 the	 effect	 of	 a	 cosmological	 constant.
Many	 ideas	 abound,	 but	 so	 far	 there	 are	 no	 compelling	 explanations	 for	what
dark	energy	is–it	could	be	nothing	more	than	a	cosmological	constant.	One	idea
is	that	empty	space	itself	 is	a	source	of	energy	(called	vacuum	energy)–it	 is	an
idea	that	is	very	familiar	to	particle	physicists,	and	we	will	meet	it	again	in	the
next	chapter.	But	there	is	a	serious	problem	with	the	notion	of	vacuum	energy:
the	particle	physics	calculations	 tend	 to	predict	a	cosmological	constant	 that	 is
vastly	 bigger	 than	 observed.	 For	 this	 reason,	 particle	 physicists	 tended	 to



suppose	 that	 the	 cosmological	 constant	 is	 actually	 equal	 to	 zero	 and	 that	 their
understanding	of	vacuum	energy	 is	 flawed.	The	preference	 for	 a	value	of	 zero
comes	 about	 because	 it	 is	 easier	 for	 a	 theorist	 to	 imagine	 that	 some	 presently
unknown	 physics	 magically	 cancels	 away	 all	 of	 the	 large	 numbers	 leaving
precisely	nothing	than	it	is	to	imagine	some	presently	unknown	physics	that	even
more	 magically	 cancels	 away	 almost	 all	 of	 the	 large	 numbers	 leaving	 almost
nothing.	 Admittedly	 that	 isn’t	 the	 most	 compelling	 logic–but	 the	 inability	 of
theorists	to	make	sense	of	the	cosmological	constant	meant	that	they	were	very
wary	of	claims	that	it	might	actually	be	present	in	Nature.	The	fact	that	the	data
do	seem	to	require	a	non-zero	value	of	the	cosmological	constant	forced	them	to
face	their	demons.	The	theoretical	prejudice	against	a	cosmological	constant	was
initially	such	that	the	leader	of	the	High-Z	Team,	Brian	Schmidt,	who	shared	the
2011	Nobel	Prize	for	 the	discovery,	has	said	 that	he	 thought	 the	publication	of
the	result	would	be	the	end	of	his	career,	because	he	felt	it	must	be	wrong.

Here,	 then,	 is	 the	 present-day	 inventory	 of	 the	 Universe	 that	 we’ve
established	 in	 this	 chapter:	 the	 mass	 density	 is	 (in	 percentages	 of	 the	 critical
density)	divided	into	5%	matter,	25%	dark	matter	and	70%	dark	energy.	We	can
now	settle	the	question	as	to	which	one	of	Robertson’s	universes	we	inhabit.	We
live	 in	universe	 type	 (i):	our	Universe	 is	of	a	 finite	age,	and	 it	will	expand	for
ever	into	the	future.

Now	 that	 we	 know	 how	 the	 mass	 and	 energy	 in	 the	 Universe	 are	 shared
between	its	different	components	we	can,	using	Friedmann’s	equation,	compute
the	rate	at	which	the	Universe	expands,	for	all	times	after	the	Big	Bang.	Figure
7.5	shows	how	the	scale	factor10	varies	with	time	for	four	conceivable	universes,
with	varying	 amounts	 of	matter	 and	dark	 energy:	 our	Universe	 corresponds	 to
the	black	curve.

The	present	day	corresponds	to	a	scale	factor	of	1,	and	we	can	therefore	read
off	that	our	Universe	is	just	less	than	14	billion	years	old.	To	be	precise–and	we
need	 to	be	 for	what	 is	coming	 in	 the	next	chapter–we	mean	 that	 this	 length	of
time	has	passed	since	the	scale	factor	was	very	small.	We	don’t	actually	believe
that	the	Friedmann	equation	is	correct	when	the	scale	factor	becomes	too	small,
but	we	do	trust	it	to	the	point	where	the	temperature	of	the	Universe	corresponds
to	the	energies	being	probed	at	the	highest	energy	particle	collider	on	Earth,	the
Large	Hadron	Collider.	 These	 energies	 correspond	 to	 a	 temperature	 of	 around
1016	 degrees	 celsius,	 which	 occurred	 at	 a	 tiny	 scale	 factor	 of	 10−16.	 This
corresponds	 to	a	 time	when	 the	current	visible	Universe	was	about	10−16	×	10
billion	light	years	across	(=	10	million	km).	Although	we	appear	to	be	backing



away	from	claiming	an	understanding	of	the	very	origins	of	the	Universe,	we	are
still	making	the	audacious	claim	that	we	can	now	describe	its	evolution	starting
out	 from	 a	 time	 when	 all	 the	 matter	 necessary	 to	 make	 all	 the	 hundreds	 of
billions	of	galaxies	in	the	observable	Universe	would	have	been	contained	in	a
sphere	that	would	sit	comfortably	inside	the	Earth’s	orbit	around	the	Sun.	But	we
are	being	too	modest–we	can	do	better	than	that.

Oh–but	before	we	do,	we	almost	forgot	about	weighing	the	Universe.	While	a
cosmologist	 would	 be	 content	 with	 saying	 that	 the	 Universe	 is	 at	 the	 critical
density,	we	can	do	the	calculation	ourselves.	The	Friedmann	equation	allows	us
to	 ascertain	 that	 the	observable	Universe	 is	 contained	 in	 a	 sphere	of	 radius	47
billion	 light	 years,	 which	 is	 bigger	 than	 14	 billion	 light	 years	 because	 of	 the
expansion	of	space.11	That	means	the	volume	of	the	observable	Universe	is	just
under	 4	 ×	 1080	m3.	We	 have	 ascertained	 that	 the	 average	mass	 density	 is	 9	 ×
10−27	kg/m3	 (if	we	include	the	contribution	from	dark	energy),	and	so	the	total
mass	of	the	observable	Universe	is	just	over	3	×	1054	kilograms.12	Numbers	this
size	 are	 very	 difficult	 to	 picture–if	 it	 helps,	 we	might	 say	 that	 the	 observable
Universe	weighs	as	much	as	5	×	1054	pints	of	bitter.

Figure	7.5	The	variation	of	the	scale	factor	with	time.	The	white	curve	is	our

Universe,	i.e.	30%	matter	and	70%	dark	energy.	The	red	curve	is	the	same

but	with	no	dark	energy,	and	the	blue	is	for	a	universe	containing	100%



matter.	The	green	is	for	a	universe	with	no	dark	energy	and	a	matter	density

10	times	the	critical	density–as	can	be	seen,	it	is	a	universe	that	ends	with	a

Big	Crunch.

Figure	8.1	A	map	of	the	Universe	from	the	Sloan	Digital	Sky	Survey	(SDSS).

The	survey	covers	around	one	third	of	the	sky	and	was	made	using	a	2.5-

metre	optical	telescope	in	New	Mexico.	Each	tiny	dot	in	the	figure	corresponds

to	a	galaxy	(each	one	containing	a	few	hundred	billion	stars).	The	galaxies

cluster	together	into	wispy	regions,	leaving	great	voids.	Perhaps	the	greatest

triumph	of	modern	cosmology	is	its	ability	to	explain,	in	detail,	the	SDSS

galaxy	map	and	the	ripples	in	the	Cosmic	Microwave	Background	(CMB),

shown	in	Figure	8.3,	using	the	same	theory.



8.	WHAT	HAPPENED	BEFORE	THE	BIG	BANG?

The	 Universe	 is	 not	 a	 homogeneous	 mulch	 of	 matter;	 it	 is	 full	 of	 intriguing
structure.	Stars	are	gravitationally	bound	into	a	beautiful	variety	of	galaxies,	and
the	 galaxies	 are	 woven	 into	 filamentary	 networks	 spanning	 many	 millions	 of
light	years	(	Figure	8.1).	What	we	want	to	do	now	is	to	explore	how	structures
like	these	emerged	out	of	the	primordial	plasma,	the	products	of	the	Big	Bang–
this	 will	 lead	 us	 to	 focus	 on	 a	 time	 when	 the	 entire	 visible	 Universe	 was
compressed	into	a	region	of	space	much	smaller	than	the	nucleus	of	an	atom.

As	we	have	seen,	for	most	of	the	first	380,000	years	after	the	Big	Bang,	the
Universe	 was	 filled	 with	 an	 almost	 featureless	 hot	 plasma	 composed	 of
electrons,	 atomic	 nuclei	 (mainly	 protons)	 and	 photons.1	We	 know	 the	 plasma
was	 nearly	 featureless,	 because	 the	 radiation	 we	 detect	 from	 this	 time–the
Cosmic	 Microwave	 Background	 (CMB)–is	 almost	 perfectly	 uniform	 in	 all
directions.	 It	 could	not	have	been	absolutely	 featureless,	however,	otherwise	 it
would	have	remained	so	for	all	 time:	galaxies	would	not	have	been	formed.	In
some	places	 the	Universe	must	have	been	ever	so	slightly	denser	 than	 in	other
regions,	and	a	closer	inspection	of	the	CMB	microwaves	does	indeed	reveal	that
they	 are	 not	 exactly	 the	 same	 across	 the	 sky.	 The	 European	 Space	 Agency’s
Planck	 satellite	 (see	Figure	 8.2)	marks	 the	 pinnacle	 in	 our	 observations	 of	 the
Cosmic	Microwave	Background;	Figure	8.3	shows	the	magnificent	photograph	it
has	taken	of	the	light	coming	from	the	time	of	recombination.

Using	computer	simulations,	we	can	go	ahead	and	track	the	evolution	of	the
Universe	 starting	 from	 the	 time	 of	 recombination	 all	 the	 way	 through	 to	 the
present	day.	During	this	period	of	evolution,	the	dark	matter	in	the	Universe	took
centre	 stage.	 Those	 regions	where	 the	 dark	matter	was	 of	 slightly	 higher	 than
average	 density	 tended	 to	 attract	 more	 matter	 from	 their	 surroundings.
Throughout	the	Universe’s	history,	this	gravitational	tendency	for	dark	matter	to
clump	has	competed	with	the	expansion	of	space,	which	has	the	opposite	effect
of	diluting	matter.	Initially,	during	the	first	50,000	years	after	the	Big	Bang,	the
expansion	won	out	because	 space	was	expanding	 too	quickly	 for	 the	matter	 to
clump:	after	this	time,	those	little	lumps	of	dark	matter	started	to	grow,	gradually



pulling	in	the	ordinary	matter	as	well.	In	this	way,	large	clouds	of	atomic	nuclei
formed	that,	 in	 the	subsequent	few	billion	years,	collapsed	to	make	galaxies	of
stars.	 This	 evolution	 of	 the	 Universe,	 from	 an	 almost-smooth	 distribution	 of
matter	into	a	lumpy	one,	is	an	unavoidable	consequence	of	gravity.

Figure	8.4	shows	the	results	of	two	such	simulations.	The	image	on	the	left,
provided	 by	 our	 colleague	 Scott	 Kay,	 shows	 how	 the	 dark	 matter	 should	 be
distributed	 today	 across	 a	 large	 portion	 of	 a	 Universe	 like	 ours	 (i.e.	 with	 the
same	amounts	of	dark	matter,	dark	energy	and	ordinary	matter).	The	 image	on
the	right	is	a	simulation	performed	as	part	of	the	Eagle	Project,	which	involves
cosmologists	 from	 across	 Europe.	 This	 image	 shows	 how	 the	 ordinary	matter
(mainly	hydrogen	gas)	is	spread	across	a	much	smaller	portion	of	the	Universe;
it’s	a	zoomed-in	version	of	the	left-hand	image,	in	which	the	wispy	nature	of	the
matter	 distribution	 is	 more	 evident.	 Astonishingly,	 the	 Eagle	 computer
simulation	 is	 able	 to	 describe	 the	 formation	 of	 realistic-looking	 individual
galaxies.



Figure	8.2	The	European	Space	Agency’s	Planck	space	telescope	was

launched	on	14	May	2009	from	the	Guiana	Space	Centre,	on	an	Ariane	5

rocket,	and	switched	off	on	23	October	2013.	During	those	few	years	it

collected	data	that	improved	on	the	already	stunning	measurements	made	by

NASA’s	WMAP	space	telescope,	which	operated	from	2001	until	2010.

WMAP	provided	the	first	detailed	measurements	of	the	ripples	in	the	CMB.

Today,	those	ripples	provide	cosmologists	with	an	opportunity	to	explore	what

happened	at	the	birth	of	our	Universe.



Figure	8.3	The	Planck	picture	of	the	microwaves	that	bathe	the	Earth.	These

originated	at	the	time	of	recombination,	which	is	when	the	young	hot	Universe

suddenly	became	transparent	to	light.	This	is	a	photograph	of	the	Universe

when	it	was	just	a	few	hundred	thousand	years	old.	The	colours	represent	the

temperature	of	the	sky;	the	cooled,	faded	glow	of	the	plasma.	Hotter	regions

are	red,	and	cooler	regions	are	blue.	The	map	shows	deviations	from	the

average	temperature,	which	is	2.726	kelvin,	or	2.726	degrees	above	absolute

zero.	The	hot	regions	are	around	100	millionths	of	a	degree	hotter	than	the

average,	and	the	cool	regions	around	100	millionths	of	a	degree	cooler.	These

variations	in	temperature	are	tiny	and	they	are	directly	related	to	density

fluctuations	in	the	plasma.



We	 can	 compare	 these	 simulations	 to	 the	 map	 of	 the	 galaxies	 in	 the	 real
Universe	 from	 the	 Sloan	Digital	 Sky	 Survey,	 shown	 in	 Figure	 8.1.	 The	 same
wispy	distribution	of	matter	is	evident.	Notice	also	how	the	ordinary	matter	(the
stuff	 of	 galaxies)	 tends	 to	 clump	 in	 networks	 that	 resemble	 those	 in	 the	 dark-
matter	distribution.	As	we	noted	above,	 this	 is	because	the	dark	matter	 is	more
abundant	 and	 its	 gravity	 tends	 to	 attract	 the	 ordinary	 matter.	 The	 agreement
between	 simulation	 and	 observation	 looks	 good	 to	 the	 naked	 eye,	 but	 it	 also
stands	 up	 to	 more	 rigorous	 mathematical	 analysis,	 meaning	 that	 we	 can	 be
confident	in	our	use	of	these	simulations	to	better	understand	the	real	Universe.

The	simulations	reveal	that	the	dark	matter	interacts	primarily	via	gravity	(as
we	 suspected),	 but	 also	 that	 it	 should	be	 ‘cold’:	 cosmologist’s	 jargon	meaning
that	 it	 is	 composed	 of	 particles	 that	 are	 not	 zipping	 around	 at	 high	 speeds.
Simulations	 in	which	 the	dark	matter	 is	 ‘hot’	 (as	would	be	 the	case	 if	 the	dark
matter	was	composed	of	fast-moving	neutrinos)	do	not	look	anything	like	Figure
8.1;	 they	 even	 fail	 to	 produce	 galaxies.	 Through	 simulations	 like	 those	 of	 the
Eagle	Project,	we	have	a	good	understanding	of	how	the	lumpiness	in	the	CMB
relates	 to	 the	 distribution	 of	 the	 galaxies	 in	 the	 Universe	 today.	 Our	 next
challenge	is	to	understand	where	this	initial	lumpiness	came	from.



Figure	8.4	On	the	left	is	a	computer	simulation	of	how	the	dark	matter	is

spread	about	across	a	3200	Mpc	patch	of	simulated	universe	(32	Mpc	deep).

The	brighter	red	regions	correspond	to	more	dark	matter	and	the	darker

regions	to	voids.	On	the	right	is	a	computer	simulation	from	the	Eagle	Project.

It	shows	how	the	ordinary	matter	is	distributed	over	a	smaller	100	Mpc	patch

of	simulated	universe	(20	Mpc	deep).	The	intensity	indicates	the	density	of

gas,	while	the	colour	indicates	its	temperature	(red	is	hotter).	The	zooms	allow

us	to	see	that	the	finest	detail	includes	accurately	simulated	single	galaxies.



In	doing	so,	perhaps	unsurprisingly,	we	are	going	 to	 return	 to	 the	 theory	of
inflation	that	we	encountered	briefly	in	the	last	chapter	and	in	Chapter	1.	First,
though,	we	 should	 stress	 that	 the	 intellectual	 origins	 of	 the	 theory	 of	 inflation
had	nothing	to	do	with	cosmologists’	attempts	to	describe	the	origin	of	structure
in	the	Universe.	That’s	to	say,	we’re	not	working	backwards	from	the	Universe
we	see	 today	and	 inventing	a	 theory	 to	explain	 the	structures	within	 it.	Rather,
we’re	 using	 a	 pre-existing	 theory	 that	 was	 constructed	 for	 entirely	 different
reasons.

Part	of	the	original	motivation	for	the	theory	of	inflation	was	that	it	should	be
able	to	solve	two	puzzles	that	appear	at	first	sight	to	be	completely	unrelated:	the
‘flatness’	 and	 ‘horizon’	 problems.	 We	 met	 the	 flatness	 problem	 in	 the	 last
chapter,	 and	 found	 that	 it	 may	 not	 be	 a	 problem	 at	 all,	 if	 the	 portion	 of	 the
Universe	we	are	currently	able	to	explore	proves	to	be	just	a	tiny	(and	relatively



flat)	 part	 of	 a	much	bigger	 (and	 curved)	Universe.	 Inflation	 delivers	 this	 huge
Universe	by	causing	space	to	expand	at	a	phenomenal	rate–we	will	explain	how
it	did	so	shortly.	Regardless	of	the	details,	we	know	that	the	period	of	inflation
must	have	happened	before	the	time	when	the	first	atomic	nuclei	formed,	which
you	will	recall	was	when	the	Universe	was	at	a	temperature	of	around	a	billion
degrees.	If	inflation	happened	during	or	after	nucleosynthesis,	the	nuclei	would
have	 become	 diluted	 and	 this	 would	 spoil	 the	 good	 agreement	 between	 the
theoretical	predictions	and	observations	of	their	abundances	that	we	discussed	in
Chapter	6.

Figure	8.5	Illustrating	the	horizon	problem.

The	horizon	problem	can	be	appreciated	by	thinking	about	the	uniformity	of
the	CMB–the	near-perfect	black	body	spectrum	we	described	in	Chapter	6.	Any
gas	of	 interacting	particles	will	 tend	 to	 share	out	 the	available	energy	between
the	particles	 as	 a	 result	 of	 collisions.	Faster	 particles	will	 lose	 energy	whereas
slower	ones	will	gain	energy.	After	a	period	of	time,	 the	gas	will	settle	 into	an
unchanging	 state,	 known	 to	 physicists	 as	 a	 state	 of	 thermal	 equilibrium.	For	 a
gas	in	equilibrium,	the	temperature	is	a	measure	of	the	average	kinetic	energy	of
the	gas	particles.	 In	 the	 time	before	 the	CMB	photons	started	on	 their	straight-



line	journeys	across	space,	the	Universe	was	still	a	hot	plasma	and	the	photons
were	 a	 part	 of	 it,	 jostling	 the	 electrons	 and	 protons	 to	 share	 out	 the	 available
energy.	The	temperature	recorded	by	the	Planck	satellite	 is	a	direct	measure	of
the	 temperature	of	 the	hot	gas	 in	 those	 final	moments	before	 the	photons	 took
flight.

So	far	so	good.	Now	let’s	uncover	the	horizon	problem,	which	is	illustrated
in	 Figure	 8.5.	 The	 CMB	 photons	 arriving	 today	 at	 Earth	 all	 started	 out	 from
points	 lying	 on	 the	 surface	 of	 a	 sphere,	whose	 radius	 is	 the	 distance	 light	 can
travel	in	a	little	under	14	billion	years.	This	is	the	blue	circle	in	the	figure	and	is
referred	to	by	cosmologists	as	the	‘surface	of	last	scattering’.	Now,	consider	two
photons	arriving	at	the	Earth	from	opposite	points	in	the	sky.	These	two	photons
were	released	from	the	hot	plasma	at	points	A	and	B	in	the	figure.	The	Planck
data	records	the	photons	coming	from	A	and	B	and	informs	us	that	these	regions
in	the	plasma	were	at	the	same	temperature,	to	one	part	in	a	hundred	thousand.
The	question	 is,	how	did	A	and	B	get	 to	be	at	 so	nearly	 the	same	 temperature
when	 they	are	 so	 far	away	 from	each	other	and	at	 first	 sight	could	never	have
been	 in	 contact	with	 each	 other?	 This	 is	 the	 horizon	 problem,	 and	 it	 is	worth
describing	in	a	little	more	detail.

If,	 before	 the	 time	 of	 recombination,	 the	 expansion	 of	 the	 Universe	 was
always	governed	by	the	ordinary	and	dark	matter	it	contains2	then,	according	to
the	Friedmann	equation,	the	following	problem	arises.	Think	about	the	point	in
the	 primordial	 plasma	 labelled	A.	 In	 the	 380,000	 years	 that	 the	 Universe	 had
been	 expanding	 before	 recombination,	 this	 part	 of	 the	 plasma	 could	 only	 ever
have	influenced	other	parts	of	the	plasma	that	lie	within	a	sphere	whose	radius	is
the	 distance	 that	 light	 could	 travel	 in	 those	 380,000	 years.	 The	 small	 circle
around	point	A	shows	the	size	of	A’s	possible	sphere	of	influence	at	the	time	of
recombination.	The	same	is	 true	for	point	B.	The	particles	 inside	each	of	 these
spheres	 could	 conceivably	 have	 had	 sufficient	 time	 to	 jostle	 their	 neighbours,
share	out	 their	 energy	and	 reach	a	 common	 temperature	by	 the	 time	 the	CMB
photons	were	released.	The	problem	is	that	the	two	spheres	of	influence	are	not
even	close	to	overlapping,	which	means	that	the	gas	near	to	A	never	jostled	with
the	gas	near	 to	B.	This	makes	us	wonder	what	 caused	 them	 to	be	 at	 the	 same
temperature.

One	 explanation	 might	 be	 that	 ‘whatever	 created	 the	 Universe	 in	 the	 first
place	did	it	in	such	a	way	that,	at	the	moment	of	the	Big	Bang,	everything	was
created	with	near	perfect	uniformity	in	temperature.’	That’s	fine	as	far	as	it	goes,
but	 it	 would	 be	 nice	 to	 have	 some	 kind	 of	 explanation	 beyond	 this.	 Inflation



provides	 such	 an	 explanation	 by	 supposing	 that,	 at	 some	 time	 prior	 to
recombination,	 the	 Universe	 underwent	 a	 freakish	 period	 of	 very	 rapid
expansion,	such	that	the	spheres	of	influence	of	A	and	B	were	much	bigger	than
indicated	in	the	figure.	With	a	fast	enough	expansion,	they	would	be	big	enough
to	 overlap.	The	 horizon	 problem	 is	 a	 little	 bit	 like	 the	 case	 of	 two	 aliens	who
know	 each	 other	 despite	 appearing	 to	 be	 too	 far	 away	 to	 have	 ever	met.	 The
puzzle	 is	 solved	once	we	know	 that	 the	 space	between	 the	 aliens	underwent	 a
rapid	expansion	sometime	in	the	past,	so	that	the	aliens	were	once	neighbours.

Of	course	it	is	easy	enough	to	say	that	a	rapid	period	of	expansion3	early	on
sounds	like	a	great	idea,	but	‘sounding	like	a	great	idea’	doesn’t	count	for	much.
We	must	check	 that	 inflation	 is	a	viable	 theory	 in	detail	as	well	as	 in	a	broad,
hand-waving	 sweep.	To	 do	 this,	we	 need	 a	mechanism	 for	 inflation	 and	 some
predictions	 to	 compare	 with	 data.	 One	 way	 to	 arrange	 for	 a	 rapid	 burst	 of
accelerated	 expansion	 is	 to	 add	 a	 sufficiently	 large	 cosmological	 constant	 into
Einstein’s	equations.	We	already	know	that	a	cosmological	constant	causes	 the
expansion	of	the	Universe	to	accelerate,	and	the	bigger	its	value,	the	bigger	the
acceleration	 (if	 you	 know	 a	 little	 maths,	 you	 can	 see	 this	 by	 solving	 the
Friedmann	 equation	 in	 Box	 10	 (pp.	 144–5)	 for	 the	 scale	 factor,	 with	 only	 a
cosmological	 constant	 and	 neglecting	 all	 other	 terms).	 As	 we	 saw	 in	 the	 last
chapter,	the	evidence	even	points	to	there	being	a	cosmological	constant	today.
The	 trouble	 is	 that	 the	 present-day	 cosmological	 constant	 is	 way	 too	 small	 to
produce	 the	 dramatic	 expansion	 needed	 to	 solve	 the	 horizon	 and	 flatness
problems.	 Fortunately,	 there	 is	 a	 way	 forward:	 General	 Relativity	 can	 be
combined	with	a	mainstream	idea	in	particle	physics	to	produce	something	that
is	exactly	like	a	cosmological	constant.	The	idea	from	particle	physics	is	that	of
a	‘scalar	field’.

Fields	 are	 familiar	 things	 to	 us	 all.	 You	 can	 map	 out	 the	 magnetic	 field
produced	by	the	Earth	using	a	compass,	and	mobile	phones	work	by	transmitting
and	receiving	waves	in	the	electromagnetic	field.	The	‘scalar	field’	that	we	shall
consider	 is	 very	 similar	 to	 the	 electromagnetic	 field,	 the	 important	 difference
being	that	it	can	pervade	the	whole	of	space	as	a	kind	of	backdrop	to	everything
else	that	happens;	picture	the	scalar	field	as	a	still	ocean	filling	space.	According
to	General	Relativity,	 if	 an	ocean-like	scalar	 field	was	present	at	 some	 time	 in
the	 history	 of	 the	 Universe,	 the	 energy	 stored	 within	 it	 could	 act	 like	 a
cosmological	 constant	 and	make	 the	Universe	expand	very	much	more	 rapidly
than	would	otherwise	be	 the	 case.	 In	 this	 ‘particle	physics’	way	of	 thinking,	 a
period	of	inflation	is	a	very	natural	 thing,	because	it	 is	what	tends	to	happen	if



scalar	 fields	exist	 in	Nature.	 In	Box	13	 (pp.	225–7),	we	explore	 the	 idea	of	an
all-pervasive	scalar	field	in	more	detail;	we	explain	that	fundamental	fields	also
predict	the	existence	of	corresponding	particles,	and	we	talk	about	a	scalar	field
that	we	know	to	exist	because	we	discovered	it	at	the	Large	Hadron	Collider:	the
Higgs	field.

The	conjectured	scalar	field	that	caused	the	young	Universe	to	accelerate	so
phenomenally	quickly	is	known	as	the	‘inflaton’	field.	As	far	as	we	can	tell,	the
inflaton	doesn’t	play	much	of	a	role	in	our	Universe	today.	There	is	no	trace	of
any	 inflaton	 particle	 production	 at	 the	 Large	 Hadron	 Collider,	 for	 example.
Given	 that	 scalar	 fields	 can	 cause	 accelerated	 expansion,	 we	 might	 well	 ask
whether	 the	present-day	cosmological	 constant	 is	due	 to	 a	 scalar	 field,	 dubbed
the	‘quintessence	field’.	We	shan’t	follow	that	idea	in	this	book,	but	it	is	popular
among	 cosmologists.	 Nor	 shall	 we	worry	 about	 whether	 there	might	 be	 some
relationship	 between	 these	 two	 postulated	 and	 one	 observed	 scalar	 fields;	 the
Higgs	field,	 the	inflaton	field	and	the	quintessence	field.	The	research	on	these
things	is	too	speculative	at	the	moment.	Here,	we	want	to	focus	on	the	inflaton
field.

To	 summarize	 the	 basic	 idea:	 if	 the	 inflaton	 field	 was	 once	 present	 in	 the
Universe,	space	could	have	expanded	very	rapidly,	because	the	energy	stored	in
the	 field	 acted	 like	 a	 large	 cosmological	 constant.	 This	 would	 have	 caused	 a
small	 portion	 of	 the	 pre-existing	 space	 to	 grow	 rapidly	 to	 cosmic	 proportions,
driving	 any	 particles	 present	 in	 the	 Universe	 before	 inflation	 to	 very	 large
separations	 and	 diluting	 them.	 As	 time	 passed,	 the	 energy	 driving	 the
inflationary	 expansion	 diminished	 until	 it	 became	 too	 small	 to	 generate	 any
further	inflation.	In	that	way,	inflation	came	to	an	end.

As	 this	 time	of	 rapid	expansion	drew	 to	a	close,	 the	 inflaton	 field	morphed
from	being	like	a	still	ocean,	whose	energy	drove	the	accelerated	expansion,	into
a	cold	gas	of	inflaton	particles.	These	inflaton	particles	then	decayed	to	produce
a	whole	 bunch	 of	 lighter	 particles,	 including	 those	 that	 populate	 the	Universe
today.	The	decay	of	heavy	particles	into	lighter	ones	with	the	release	of	energy	is
the	norm	 in	Nature:	 all	 known	particles	 tend	 to	decay	 into	 lighter	ones	 if	 they
possibly	 can.	 We’ve	 already	 encountered	 one	 example	 in	 Chapter	 6:	 isolated
neutrons	 decay	 into	 protons	 in	 a	 few	 minutes.	 Top	 quarks	 decay	 into	 lighter
quarks	 in	 a	minuscule	 10−25	 seconds,	 and	 the	Higgs	 particle	 decays	 in	 around
10−22	seconds.	Given	the	fleeting	nature	of	their	existence,	it	 is	impressive	that
particle	physicists	have	managed	to	discover	the	top	quark	and	the	Higgs	boson,
let	alone	measure	their	properties.



BOX	13.	FUNDAMENTAL	FIELDS	AND	THE	HIGGS
BOSON

When	 physicists	 think	 of	 a	 field,	 they	 imagine	 some	 quantifiable
thing	 that	 is	 spread	out	across	space.	A	very	 simple	example	of	a
scalar	 field	 is	 the	 temperature	 field	 in	a	 room.	At	each	point	 in	 the
room	 we	 can	 associate	 a	 temperature,	 and	 so	 can	 represent	 the
field	by	a	list	of	numbers,	one	for	each	point	in	space.	If	you	want	to
know	the	temperature	somewhere	then	you	just	need	to	look	up	the
correct	number	from	the	list.	Obviously	this	 is	dull.	The	utility	of	the
field	concept	comes	when	we	want	to	do	more	sophisticated	things,
like	track	how	the	temperature	varies	with	time.	If	 there	is	a	source
of	heat	in	the	room,	then	the	air	temperature	would	change	with	time
in	a	complicated	way:	the	air	close	to	the	heat	source	would	become
warmer	 and	 rise	 upwards	 by	 convection	 and	 this	 would	 disperse
through	the	room,	and	so	on.	If	we	had	the	right	equations,	we	could
attempt	 to	compute	how	 the	 temperature	 field	 throughout	 the	 room
would	vary	in	the	presence	of	the	heat	source.	In	this	case,	the	field
is	 a	 concrete	 mathematical	 representation	 of	 something	 very	 real,
and	it	can	be	manipulated	using	mathematics	to	allow	us	to	compute
the	temperature	in	the	room	at	any	place	and	at	any	particular	time.
This	 is	a	good	 illustration	of	how	physicists	use	mathematics:	 they
represent	real	physical	things	by	abstract	mathematical	entities	(like
fields),	 and	 then	 they	 process	 those	 entities	 using	 mathematical
operations	 in	 order	 to	 answer	 concrete	 questions	 about	 the	 real
world.

The	temperature	field	 is	a	scalar	 field	because	we	can	specify	 it
by	 giving	 just	 one	 number	 at	 each	 point	 in	 space.	 The
electromagnetic	 field	 is	not	a	scalar	 field;	 it	 is	a	vector	 field.	Vector
fields	are	specified	by	giving	a	number	and	a	direction	at	each	point
in	space.	A	simple	example	is	the	flow	of	the	air	in	a	room.	At	each
point	 we	 should	 say	 how	 fast	 the	 air	 is	 flowing	 and	 also	 in	 which
direction	 it	 is	 heading.	 Taken	 together,	 these	 two	 pieces	 of
information	 (stated	 for	 each	 point	 in	 the	 room)	 correspond	 to	 a
complete	representation	of	the	air-flow	field.	The	directional	piece	of



the	 electromagnetic	 vector	 field	 is	 referred	 to	 as	 its	 polarization–
exploited,	 for	 instance,	 in	 the	design	of	polaroid	sunglasses,	which
selectively	 block	 out	 electromagnetic	 light	 waves	 of	 a	 particular
polarization.	Roughly	speaking,	the	polarization	of	a	light	wave	tells
us	the	direction	in	which	the	wave	is	waving.	Think	of	shaking	waves
onto	a	rope:	the	direction	in	which	your	hand	is	shaking	determines
the	 polarization	 of	 the	 wave.	 Where	 the	 temperature	 and	 air-flow
fields	differ	 from	the	electromagnetic,	Higgs	or	 inflaton	fields	 is	 that
in	 the	 former	 it	 is	 very	 clear	 that	 the	 fields	 are	 representing
something	more	fundamental:	they	are	tracking	features	of	the	air	in
the	 room.	 In	 the	 case	 of	 the	 electromagnetic,	 Higgs	 and	 inflaton
fields,	 however,	 we	 do	 not	 know	 whether	 they	 are	 composed	 of
something	more	 fundamental.	 Perhaps	 experiments	 such	 as	 those
at	 the	 Large	Hadron	Collider	 will	 reveal	 that	 the	Higgs	 field	 is	 not
fundamental,	but,	for	now,	our	understanding	of	Nature	is	too	crude
to	 be	 able	 to	 resolve	 this	 either	 way.	 As	 far	 as	 these	 fields	 are
concerned,	 we	 are	 in	 a	 similar	 position	 to	 those	 who	 studied	 the
world	before	 they	knew	 that	atoms	existed.	Now,	of	course,	we	no
longer	 regard	 fire,	 earth	 and	 water	 as	 elemental–but	 who	 knows
whether	or	not	we	are	really	much	closer	 than	our	predecessors	to
finding	the	‘true	nature	of	things’?

Today,	 physicists	 have	 identified	 a	 set	 of	 what	 appear	 to	 be
fundamental	 fields.	 The	 Higgs	 and	 electromagnetic	 fields	 are	 two,
but	 there	 are	 also	 six	 different	 quark	 fields,	 six	 lepton	 fields
(including	 an	 electron	 field	 and	 three	 neutrino	 fields),	 a	 gluon	 field
and	 the	 weak	 interaction	 fields.	 All	 these	 can	 be	 described	 by	 a
single	mathematical	framework	called	the	Standard	Model	of	particle
physics,	 constructed	 during	 the	 course	 of	 the	 1960s	 by	 Sheldon
Glashow,	 Abdus	 Salam	 and	 Steven	 Weinberg.1	 The	 laws	 of
quantum	 mechanics,	 when	 applied	 to	 these	 fields,	 imply	 that	 for
each	field	there	is	a	corresponding	particle.	For	the	electromagnetic
field,	the	particle	is	the	photon	and	for	the	Higgs	field	it	is	the	Higgs
boson.	All	the	known	types	of	particle	in	Nature	are	associated	with
the	 quantum	 behaviour	 of	 a	 corresponding	 field,	 and	 the	 apparent
wave-like	nature	of	electromagnetic	waves	can	be	understood	as	the
behaviour	 of	 a	 large	 number	 of	 photons,	 all	 propagating	 in	 accord
with	 the	 laws	 of	 quantum	 physics.	 The	 Standard	 Model	 is



astonishingly	successful	because	it	can	describe	the	behaviour	of	all
the	 particles	we	 see	 in	 Nature,	 with	 the	 notable	 exception	 of	 dark
matter,	and	the	ways	that	they	interact	with	each	other.	Armed	with
the	Standard	Model,	we	can	explain	how	atoms	work,	the	origins	of
radioactivity	and	the	fusion	processes	that	make	stars	burn.	In	fact,
the	Standard	Model	encourages	us	to	think	of	the	entire	Universe	as
being	built	up	out	of	a	huge	number	of	particles	that	hop	around	and
interact	 with	 each	 other	 in	 precisely	 calculable	 ways.	 Only	 the
gravitational	 interaction	between	particles	 is	not	entirely	understood
in	this	way.	We	understand	this	interaction	quite	well–we’ve	spent	a
large	 part	 of	 this	 book	 talking	 about	 General	 Relativity–but	 this
understanding	 fails	when	we	try	and	work	out	what	happens	at	 the
shortest	 distances,	 or	 in	 the	 proximity	 of	 huge	 masses	 at	 high
densities	such	as	those	present	at	the	heart	of	a	black	hole.	Figuring
out	 what	 dark	 matter	 is,	 and	 understanding	 how	 to	 compute
quantum	gravitational	effects	at	very	short	distances,	are	two	of	the
big	questions	that	physicists	are	currently	wrestling	with.

The	 particle	 physics	 way	 of	 tackling	 these	 questions	 is	 the
ultimate	 in	 reductionism,	 because	 everything	 boils	 down	 to	 tiny
particles	and	their	interactions.	But	understanding	what	the	particles
are	 and	 how	 they	 interact	 is	 not	 the	 same	 as	 understanding	 the
richness	of	the	Universe.	Presumably,	the	complex	behaviour	of	life
really	does	emerge	from	the	rules	encoded	in	the	Standard	Model	of
particle	physics–but	it	would	be	a	fool	who	thought	that	biology	is	in
some	sense	diminished	by	the	fact.	Most	of	us	can	learn	the	rules	of
chess,	 but	 very	 few	 can	 play	 the	 game	as	well	 as	 a	 grandmaster.
But	enough	of	those	musings…	let’s	get	back	to	scalar	fields.

In	 the	main	 text	 (p.	 223),	we	 said	 that	 the	electromagnetic	 field
does	 not	 pervade	 the	whole	 of	 space	 in	 the	way	 that	 scalar	 fields
might.	Roughly	speaking,	this	means	that	electromagnetic	fields	will
be	 largest	 in	 the	 vicinity	 of	 light	 bulbs	 or	 other	 sources	 of	 jiggling
electrically	charged	particles;	but,	 far	away	 from	such	sources	 they
will	be	 to	all	 intents	and	purposes	absent.	 In	contrast,	 scalar	 fields
can	be	substantial	across	huge	swathes	of	the	Universe.	Before	we
get	 on	 to	 the	 hypothesized-but-not-yet-detected	 inflaton	 field,	 the
case	of	the	Higgs	field	is	worth	considering	in	more	detail.

Peter	Higgs	shared	the	2013	Nobel	Prize	in	physics	with	François



Englert	 for	 their	 prediction	 of	 the	 existence	 of	 the	 Higgs	 boson,
which	 was	 discovered	 the	 previous	 year	 at	 the	 Large	 Hadron
Collider.	 In	 the	 1960s	 Higgs	 and	 (independently)	 Englert–working
with	 another	 Belgian	 physicist,	 Robert	 Brout–argued	 for	 the
existence	of	an	all-pervasive	scalar	 field	 in	order	 to	solve	a	puzzle
concerning	 how	 the	 particles	 in	 Nature	 get	 to	 have	 mass.	 Before
they	 came	 up	 with	 the	 Higgs	 field	 (or,	 more	 correctly,	 the	 Brout-
Englert-Higgs	 field),	 the	 mathematics	 governing	 how	 elementary
particles	behave	only	made	sense	if	the	particles	had	zero	mass	and
zipped	 around	 at	 the	 speed	 of	 light,	 which	 is	 obviously	 nonsense.
Rather	than	ditch	the	whole	mathematical	framework,	Brout,	Englert
and	Higgs	rescued	things	by	supposing	that	there	is	an	all-pervasive
scalar	 field,	 spread	uniformly	across	 the	Universe.	This	 field	would
interact	in	different	ways	with	the	various	types	of	particle	and,	in	so
doing,	would	 give	 us	 the	 impression	 that	 they	 have	 different,	 non-
zero	masses.	This	smart	idea	was	central	to	the	construction,	a	few
years	later,	of	the	Standard	Model.	We	aren’t	 immediately	aware	of
this	all-pervasive	scalar	field	because	we	have	been	living	with	it	all
of	our	lives:	it	is	the	backdrop	to	our	material	existence.

If	 this	all	 sounds	a	bit	 like	a	hotchpotch	of	 ideas,	 it	 isn’t.	Scalar
fields	can	very	easily	fill	up	all	of	space	in	a	process	similar	to	how
water	condenses	out	of	the	air	to	produce	dew.	The	equations	reveal
that	 empty	 space	may	 prefer	 not	 to	 be	 empty,	 but	 rather	 to	 fill	 up
with	 ‘Higgs	 field	 condensation’,	 because	 condensation	 is	 lower	 in
energy	than	‘empty’.	This	might	sound	weird,	because	it	seems	like
something	 is	 coming	 from	 nothing–but	 the	 quantum	 nature	 of	 the
world	means	that	empty	space	is	never	a	simple	thing;	instead	it	is	a
seething	broth	of	particles	forever	hopping	in	and	out	of	existence.

In	contrast,	the	electromagnetic	field	cannot	condense,	because	it
does	 not	 interact	 with	 itself.	 To	 illustrate	 the	 point,	 notice	 that	 the
light	carrying	the	information	from	a	page	of	this	book	to	your	eyes	is
evidently	not	knocked	off	course	by	light	travelling	sideways–or,	put
another	 way,	 photons	 do	 not	 interact	much	with	 other	 photons.	 In
contrast,	Higgs	particles	do	 interact	with	other	Higgs	particles,	and
this	self-interaction	creates	 the	conditions	 that	allow	 the	Higgs	 field
to	condense	out	of	nothing.	Scalar	fields	do	not	have	a	monopoly	on
being	able	to	condense	into	the	vacuum;	the	quark	and	gluon	fields



can	 also	 condense.	 Today,	 understanding	 ‘nothing’	 is	 one	 of	 the
most	interesting	problems	in	the	whole	of	physics.

Unlike	 all	 of	 the	 other	 fields	 we	 have	 just	 been	 discussing,	 the
inflaton	field	is	not	well	established	by	experiment.	As	we	will	see	(p.
242),	 the	 evidence	 for	 inflation	 is	 strong–but	 it	 is	 not	 yet
overwhelming.	Moreover,	we	might	 entertain	 the	 idea	 that	 inflation
did	happen,	but	by	means	other	 than	via	 the	existence	of	a	scalar
field.	However,	again	as	we	will	see,	the	existence	of	an	inflaton	field
can	 also	 explain	 the	 origins	 of	 the	 primordial	 lumpiness	 in	 the
Universe.	This	 is	 the	 real	 reason	why	 the	 inflaton	 field	 is	 taken	 so
seriously	by	so	many	cosmologists.

In	the	main	text	we	said	that	the	energy	stored	up	in	a	scalar	field
can	 boost	 the	 expansion	 of	 the	 Universe.	 You	 might	 well	 ask
whether	the	energy	stored	up	in	the	Higgs	field	(and	the	quark	and
gluon	condensates)	 is	presently	doing	just	that.	You	might	also	ask
whether	 this	 could	 conceivably	 be	 the	 source	 of	 the	 cosmological
constant,	 which	 we	 encountered	 in	 the	 last	 chapter	 and	 which	 is
currently	causing	the	expansion	to	accelerate.	Not	 to	put	 too	fine	a
point	on	it,	the	situation	is	a	theoretical	disaster	zone.	Taken	at	face
value,	the	energy	stored	up	in	the	Higgs	field	should	be	causing	the
Universe	to	explode	apart.	That	 is	evidently	not	what	 is	happening,
which	means	we	do	not	understand	how	to	account	for	the	vacuum
energy	that	pertains	today.	Our	lack	of	understanding	about	why	the
observed	cosmological	constant	 is	so	small	 is	perhaps	the	greatest
unsolved	problem	in	physics.

After	 the	 inflaton	 particles	 decayed,	 what	 remained	 was	 a	 Universe	 filled
with	the	stuff	of	the	Big	Bang.	This	is	very	neat:	the	inflaton	field	drives	a	tiny
patch	of	space	into	a	rapid	burst	of	expansion;	then,	as	inflation	ends,	 the	field
decays	to	fill	 the	now	much	larger	Universe	with	the	stuff	 that	was	destined	to
form	everything	in	the	Universe	today.

Each	 idea	 in	 this	sequence	follows	from	the	 last	one	 in	a	pretty	compelling
way.	Nothing	 is	 contrived:	 every	 piece	 is	 built	 on	 known	 or	 at	 least	 plausible
physics,	given	what	we	understand	about	particles,	fields	and	General	Relativity.
As	well	as	doing	away	with	the	horizon	and	flatness	problems,	inflation	provides
a	vivid	description	of	how	the	Big	Bang	came	about,	because	it	explains	where



all	of	the	particles	in	the	Universe	came	from.	If	this	were	all	there	is	to	inflation,
however,	it	would	still	be	confined	to	the	class	of	fancy	scientific	ideas	that	are
doomed	to	remain	the	 idle	musings	of	 theoretical	physicists.	We	need	concrete
predictions	that	can	be	tested	by	measuring	things.	And	this	is	where	the	idea	of
inflation	delivers.	It	predicts	the	correct	features	of	the	ripples	in	the	CMB	and
the	distribution	of	galaxies	across	the	sky.

As	an	 idea,	 inflation	 took	off	 in	 the	early	1980s	 following	a	paper	by	MIT
cosmologist	 Alan	 Guth,	 who	 drew	 attention	 to	 the	 virtues	 of	 working	 on	 the
assumption	that	there	was	a	rapid	period	of	expansion	early	on	in	the	Universe’s
history.	 Although	 Guth	 introduced	 a	 scalar	 field	 and	 obtained	 an	 inflating
Universe,	 his	 original	 version	 of	 events	 did	 not	 lead	 to	 inflation	 ending	 with
inflaton-particle	decay	and	a	resultant	Big	Bang.	Guth	realized	the	problem	and
concluded:	 ‘I	 am	 publishing	 this	 paper	 in	 the	 hope	 that	 it	 will	 highlight	 the
existence	of	these	problems	and	encourage	others	to	find	some	way	to	avoid	the
undesirable	features	of	the	inflationary	scenario.’	With	this	remark,	he	had	laid
down	 the	 gauntlet.	 Around	 the	 same	 time,	 and	 quite	 independently,	Moscow-
based	 physicists	 Alexei	 Starobinsky	 at	 the	 Landau	 Institute	 for	 Theoretical
Physics	and	Andrei	Linde	at	the	Lebedev	Institute	also	began	to	explore	the	idea
of	 an	 inflationary	 phase	 in	 the	 early	 Universe.	 In	 1982,	 Gary	 Gibbons	 and
Stephen	 Hawking	 convened	 a	 now-famous	 meeting	 of	 Soviet	 and	 Western
physicists	 in	 Cambridge.	 By	 the	 end	 of	 that	 year,	 cosmologists	 had	 not	 only
established	a	working	model	of	 inflation,4	 they	had	also	 realized	 that	quantum
fluctuations	in	the	inflaton	field	could	generate	the	initial	lumpiness	that	seeded
the	growth	of	structure	in	the	Universe.5

According	 to	 the	 laws	 of	 quantum	 physics,	 the	 scalar	 field	 cannot	 be
perfectly	 smooth	 over	 all	 of	 space–it	 cannot	 be	 a	 perfectly	 still	 ocean.
Heisenberg’s	Uncertainty	Principle,	which	is	a	consequence	of	the	basic	laws	of
quantum	 physics,	 says	 that	 the	 field	 has	 to	 fluctuate	 up	 and	 down	 slightly	 by
varying	 amounts	 from	place	 to	 place.6	One	of	 the	 implications	 is	 that	 ‘empty’
space	comprises	a	 seething	broth	of	particles	and	anti-particles	 that	pop	out	of
nothing	in	pairs	before	coming	back	together	and	disappearing	a	fleeting	instant
later.	 In	 ordinary,	 non-inflating	 space	 these	 quantum	 effects,	 which	 are
necessarily	present	in	all	fields,	lead	to	fluctuations	that	average	out	to	zero.	We
can	 glimpse	 them,	 however:	 the	 fleeting	 production	 of	 electron-positron	 pairs
leads	 to	 fluctuations	 in	 the	 photon	 field	 that	 can	 be	 detected	 by	making	 very
precise	measurements	of	the	spectral	lines	emitted	by	hydrogen	atoms.	(In	1965,
Richard	Feynman,	Julian	Schwinger	and	Sin-Itiro	Tomonaga	received	the	Nobel



Prize	in	Physics	for	working	out	how	to	perform	this	calculation.)
While	 the	 effect	 of	 these	 ‘vacuum	 fluctuations’	 averages	 to	 zero	 in	 non-

inflating	space,	something	very	interesting	happens	if	the	space	is	expanding	fast
enough.	The	Uncertainty	Principle	 says	 that	 the	 particle	 and	 anti-particle	 pairs
can	exist	only	for	a	limited	amount	of	time	before	they	slip	back	into	nothing.	If
space	is	inflating,	however,	it	is	possible	for	the	particle	and	anti-particle	to	get
swept	 so	 far	 apart	 that	 they	cannot	come	back	 together	 to	annihilate.	They	are
carried	 out	 of	 each	 other’s	 horizons	 before	 they	 can	 return	 their	 energy	 to	 the
vacuum.	 If	 this	 happens,	 they	 have	 no	 option	 but	 to	 become	 real	 material
particles.	 It	 is	 as	 if	 the	 expanding	 space	 has	 provided	 the	 means	 by	 which
particles	 emitted	 out	 of	 nothing	 can	 escape	 the	 death-grip	 of	 Heisenberg’s
Uncertainty	Principle.	Empty	space	in	a	rapidly	expanding	universe	glows	with
particles.7	As	the	particles	become	real	they	add	little	waves	to	the	formerly	still
ocean	of	 the	scalar	 field.	 In	Box	14	 (p.	231)	we	go	 into	a	 little	more	detail	on
how	 it	 is	 that	 real	 particles	 can	 be	 produced	 from	 nothing	 in	 an	 inflating
Universe.

BOX	14.	DE	SITTER	SPACE

If	 the	Universe	 is	expanding	under	 the	 influence	of	a	 cosmological
constant	 (and	no	other	appreciable	source	of	energy),	we	say	 that
the	corresponding	space–one	of	Robertson’s	possible	universes–is
‘de	 Sitter	 space’,	 named	 after	 the	 Dutch	 mathematical	 physicist
Willem	de	Sitter.	De	Sitter	space	has	a	horizon,	 in	the	same	sense
that	a	point	on	 the	Earth’s	surface	has	a	horizon	beyond	which	we
cannot	see.	On	Earth,	the	horizon	is	a	feature	of	the	curved	surface.
In	 de	 Sitter	 space,	 the	 horizon	 is	 a	 feature	 of	 the	 Universe’s
accelerating	expansion.	To	see	this,	imagine	you	are	standing	in	de
Sitter	space	and	watching	a	light-bulb	recede	as	space	expands.	At
some	point,	the	light-bulb	will	be	moving	away	so	fast	that	the	light	it
emits	 will	 never	 reach	 you	 and,	 at	 that	 point,	 we	 say	 it	 has
disappeared	 beyond	 your	 horizon.	Real	 particles	 and	 anti-particles
are	produced	 if,	 after	 the	pair	 has	popped	out	of	nothing,	 they	are
subsequently	swept	outside	of	each	other’s	horizon	before	they	get
the	chance	to	recombine	again.



Now	 let’s	 think	 about	 how	 this	 new	 idea	 impacts	 on	 our	 picture	 of	 the
expanding	Universe	during	the	time	of	inflation.	Consider	the	patch	of	Universe
that	 is	 destined	 to	 grow	 into	 our	 visible	 Universe.	 If	 the	 inflaton	 field	 varies
slightly	from	place	to	place	across	the	patch	then	the	amount	of	energy	available
to	inflate	the	Universe	will	vary	too,	because	the	energy	driving	the	expansion	is
controlled	 by	 the	 size	 of	 the	 field.	 This	 means	 that	 the	 quantum-fluctuations-
made-real	will	cause	some	regions	of	the	patch	to	inflate	for	slightly	longer	than
other	regions–and	this	has	dramatic	consequences.

We	have	seen	that	when	inflation	ends,	space	fills	up	with	particles.	Because
the	particles	are	filling	up	a	space	that	has	been	stretched	by	different	amounts,
the	density	of	particles	will	also	vary	from	place	to	place.	The	particles	will	be
more	densely	populated	in	regions	that	have	not	inflated	as	much.	Crucially,	this
means	that	there	will	be	a	variation	in	the	density	of	particles	that	is	the	same	for
all	of	the	different	types	of	particle.	If	a	region	has	been	stretched	1%	more	by
volume	 than	 a	 neighbouring	 region,	 the	 density	 of	 photons,	 protons,	 neutrinos
and	dark	matter	particles	will	all	be	1%	lower.	Cosmologists	refer	to	this	type	of
deviation	 from	 a	 smooth,	 perfectly	 uniform	 distribution	 of	 particles,	 as	 a
‘curvature	 perturbation’	 or	 ‘an	 adiabatic	 perturbation’.	 Figure	 8.6	 illustrates	 a
curvature	perturbation	in	two	dimensions,	and	the	grid	lines	allow	us	to	see	how
different	 regions	 of	 space	 have	 been	 stretched	 by	 different	 amounts.	 The
corresponding	variations	in	the	density	of	particles	created	at	the	end	of	inflation
are	 the	 seeds	 that	 generate	 the	 clumping	of	matter	we	 see	 across	 the	Universe
today.



Figure	8.6	Picturing	a	curvature	perturbation.	The	rippled	surface	corresponds

to	a	two-dimensional	space	that	has	been	stretched	by	different	amounts	in

different	places.	The	space	of	our	Universe	at	the	end	of	inflation	is	like	a

three-dimensional	version	of	this.



Figure	8.7	The	evolution	of	the	inflaton	field	in	our	patch	of	the	Universe.	The

top	left	is	at	a	time	when	the	entire	visible	Universe	is	10−26	metres	across.

Time	increases	from	top	left	to	bottom	right.



To	test	whether	this	way	of	generating	small	non-uniformities	in	the	distribution
of	 matter	 and	 energy	 at	 the	 time	 of	 the	 Big	 Bang	 is	 correct,	 we	 need	 to
understand	the	details	of	the	ripples	in	the	inflaton	field,	and	how	these	lead	to
measurable	properties	 in	 the	CMB	and	 the	distribution	of	 the	galaxies.	This	 is
something	 we	 can	 certainly	 do.	 The	 way	 the	 inflaton	 field	 changes	 as	 time
advances,	in	response	to	the	quantum	fluctuations,	is	best	illustrated	in	a	movie,
and	in	Figure	8.7	we	have	shown	stills	from	such	a	movie.	The	tiny	ripple	in	the
top	left	image	represents	the	inflaton	field	when	our	visible	Universe	was	about
the	 same	 size	 as	 the	de	Sitter	 horizon	 (see	Box	14,	 p.	 231),	 at	which	 time	 the
field	 would	 have	 been	 fairly	 smooth	 over	 the	 patch.8	 For	 typical	 inflationary
scenarios,	 the	 de	 Sitter	 horizon	might	 be	 something	 like	 10−26	 metres	 across,
which	 is	mind-bogglingly	 small	 (it	 is	100	billion	 times	 smaller	 than	a	proton).
The	second	image	shows	the	Universe	a	 little	 later	on,	when	the	original	patch
has	been	stretched	and	some	new	ripples	have	been	created.	In	the	first	image	on
the	 second	 row,	 the	 ripples	 have	 stretched	 some	more,	 and	more	 new	 ripples
have	 appeared.	 The	 creation	 of	 new	 ripples	 as	 the	 old	 get	 stretched	 continues
over	and	over	again,	at	a	steady	rate,	until	the	end	of	inflation.

These	stills	provide	a	way	to	visualize	the	ripples	in	the	inflaton	field	and	the
way	they	grow	with	time.	To	simplify	things,	they	show	ripples	on	a	flat	surface,
like	ripples	on	the	surface	of	a	pond,	whereas	in	the	real	world	they	are	ripples	in
a	 three-dimensional	 space,	 which	 are	 harder	 to	 visualize.	We’ve	 also	 taken	 a
little	 artistic	 licence	 to	 make	 things	 easier	 to	 see,	 by	 representing	 the	 region
surrounding	 the	growing	patch	as	being	completely	 flat.	This	 isn’t	 correct:	 it’s
not	 really	 flat,	 because	 it	 too	 will	 have	 ripples	 that	 were	 generated	 at	 times
before	we	started	the	movie.	We’ve	drawn	things	this	way	because	we	want	to
track	 how	 the	 ripples	 in	 one	 part	 of	 space	 evolve	with	 time,	 and	 it’s	 easier	 to
identify	the	patch	we	are	interested	in	if	we	leave	the	surrounding	space	out	of	it.
In	reality,	 the	first	still	 in	the	sequence	ought	to	look	more	like	the	last	one,	 in
which	case	our	entire	visible	Universe	might	be	one	of	the	small	ripples	sitting
on	top	of	a	stack	of	previously	formed	and	stretched	ones.

A	particularly	noteworthy	feature	of	the	pattern	of	ripples	formed	in	this	way
is	that	it	is	what	physicists	refer	to	as	‘scale	invariant’.	This	means	that	we	can
zoom	in	or	out	of	 the	image	and	it	will	 look	the	same.	Obviously	this	 isn’t	 the
case	the	way	we’ve	drawn	it,	particularly	in	 the	earlier	pictures–but	remember,
the	 flat	 regions	 are	 only	 there	 for	 clarity.	 The	 scale	 invariance	 becomes	more
evident	 in	 the	 final	 few	 images	 in	 the	 sequence.	 The	 net	 result	 of	 this	 steady
production	and	stretching	of	ripples	is	a	picture	of	ripples	on	top	of	ripples	that



looks	like	a	bristling	hive	of	activity	on	an	unchanging	theme.	The	pattern	might
look	random,	but	because	it	is	scale	invariant	it	is	also	very	distinctive.

Figure	8.8	A	snapshot	of	a	universe	during	inflation.	The	blue	regions

correspond	to	places	where	the	field	is	smaller.	The	zoomed-in	portion

illustrates	that	the	pattern	is	scale	invariant.

The	theory	of	inflation	therefore	delivers	a	prediction	for	what	the	Universe
ought	to	look	like	when	inflation	draws	to	a	close.	Figure	8.8	shows	a	different
way	of	visualizing	the	inflaton	field	in	Figure	8.7,	which	focuses	our	attention	on
the	very	important	prediction	of	scale	invariance.	The	blue	regions	are	where	the



inflaton	 field	 is	 smallest,	 and	 the	 red	 regions	 are	 where	 it	 is	 biggest.	 Scale
invariance	means	that	if	we	look	at	a	particular	patch	of	the	image	and	zoom	in
or	out,	we	will	see	patterns	that	are	indistinguishable	from	each	other.	Since	the
inflaton	field	shapes	the	space	that	will	be	filled	by	the	particles	produced	in	the
Big	 Bang,	 we	 might	 expect	 this	 scale	 invariance	 to	 impact	 on	 the	 observed
temperature	fluctuations	in	the	CMB,	and	here	a	glance	at	the	Planck	photograph
of	 the	 CMB	 is	 at	 least	 suggestive:	 Figures	 8.8	 and	 8.3	 do	 have	 certain
similarities.	 Of	 course,	 we	 need	 to	 do	 far	 better	 than	 making	 such	 vague
observations.	 We	 need	 to	 understand	 how	 the	 initially	 scale-invariant	 plasma
changed	as	it	evolved;	if	we	can	do	so,	we	will	then	be	able	to	predict	what	the
CMB	should	look	like	in	detail.

First,	 we	 need	 to	 mention	 that	 there	 is	 a	 subtle	 prediction	 from	 inflation
regarding	the	scale	invariance	of	the	ripple	pattern.	The	expansion	rate	of	space
must	 have	 slowed	 during	 the	 course	 of	 inflation,	 not	 least	 because	 inflation
eventually	 had	 to	 end.	 As	 the	 expansion	 rate	 slowed,	 new	 ripples	 were	 not
created	 quite	 so	 rapidly,	 and	 this	 slowing-down	 leads	 to	 a	 slight	 deficit	 of
smaller-sized	ripples	compared	to	expectations	based	on	the	idea	of	perfect	scale
invariance.	This	 point	 is	 important,	 because	 it	 is	 a	 pretty	generic	prediction	of
inflation.	 Those	 small	 deviations	 from	 scale	 invariance	 leave	 a	 measurable
imprint	on	the	CMB.

Our	goal	now	 is	 to	work	out	what	 the	observable	 consequences	 are	 for	 the
CMB	 and	 the	 galactic	 structure	 we	 see	 in	 the	 Universe	 today.	 The	 theory	 of
inflation	will	stand	or	fall	based	on	this	comparison.	Perhaps	surprisingly,	this	is
not	as	difficult	as	it	sounds.	The	whole	business	is	rather	like	trying	to	figure	out
what	happens	if	you	kick	a	bucket	of	water.	The	kick	will	cause	the	water	to	be
perturbed	in	some	way	and,	if	we	know	precisely	how	it	is	perturbed,	we	can	use
the	equations	of	fluid	dynamics	to	evolve	the	perturbations	forward	and	predict
how	the	water	in	the	bucket	will	look	at	a	later	time.	Inflation,	like	the	kick,	lays
down	the	initial	perturbations;	the	rest	is	dictated	by	equations	similar	to	those	of
fluid	dynamics.	Instead	of	a	bucket	of	water,	the	early	Universe	was	a	hot	soup
of	elementary	particles,	but	 the	idea	is	very	similar.	In	fact,	strange	as	 it	might
seem,	the	equations	for	the	Universe	are	far	simpler	to	solve	than	the	equations
for	a	bucket,	because	of	the	feebleness	of	gravity	and	the	small	size	of	the	initial
ripples.	 It’s	 not	 too	 far	 off	 the	mark	 to	 say	 that	 tracking	 the	 evolution	 of	 the
Universe,	starting	from	a	time	when	everything	was	compressed	into	a	space	far
smaller	than	the	nucleus	of	an	atom,	is	an	easier	job	than	tracking	the	evolution
of	waves	in	a	kicked	bucket.



Figure	 8.9	 is	 possibly	 the	most	 astonishing	 graph	 in	 the	whole	 of	 physics.
The	data	points	are	derived	directly	from	the	Planck	measurement	of	the	CMB.
They	 are	 a	mathematical	 representation	 of	 what	 our	 Universe	 actually	 looked
like,	 380,000	 years	 after	 the	 Big	 Bang.	 The	 solid	 curve	 is	 a	 theoretical
prediction,	and	you	must	be	impressed	at	its	accuracy;	it	sits	bang	on	top	of	the
data.	You	should	be	even	more	impressed	when	we	tell	you	that	the	theoretical
curve	 is	 produced	 from	 a	 set	 of	 initial	 perturbations	 in	 an	 otherwise	 smooth
plasma	 that	 have	 their	 origin	 in	 curvature	perturbations	 that	 are	nearly	but	 not
quite	 scale	 invariant,	 precisely	 as	 predicted	 by	 inflation.	 These	 perturbations
were	 evolved	 forward	 to	 the	 time	 of	 recombination,	 when	 the	 CMB	 was
released.	Moreover,	 the	 theoretical	 curve	 is	 for	 a	 universe	 that	 today	 contains
68%	dark	energy,	27%	dark	matter	and	5%	ordinary	matter.	This	means	we	also
have	 independent	confirmation	of	all	 the	 results	we	established	by	a	variety	of
other	 methods	 in	 the	 previous	 chapter!	 F.	 Scott	 Fitzgerald	 said	 that	 using	 an
exclamation	mark	is	like	laughing	at	your	own	joke,	but	it	is	surely	appropriate
here.	Not	only	does	 this	graph	support	 the	 idea	 that	 the	density	 fluctuations	 in
the	CMB	had	 their	origin	 in	almost	scale-invariant	 ripples	 in	 the	 inflaton	field,
but	 it	 also	 provides	 support	 for	 our	 previous	 estimates	 of	 the	 amount	 of	 dark
matter,	dark	energy	and	ordinary	matter	 in	 the	Universe,	which	had	nothing	 to
do	with	the	observations	of	the	ripples	in	the	CMB.	We’ll	now	describe	how	all
these	key	numbers	describing	our	Universe	were	extracted	from	this	single	plot.9



Figure	8.9	The	temperature	fluctuations	in	the	CMB	as	measured	by	the

Planck	satellite.

First	 of	 all,	 we	 need	 to	 understand	 what	 the	 wiggles,	 or–rather	 more
scientifically–the	peaks	and	 troughs,	 in	 the	graph	represent.	Cosmologists	 refer
to	these	as	‘acoustic	peaks’,	because	they	were	produced	by	sound	waves	in	the
primordial	plasma.	The	Universe	rang	like	a	bell,	with	the	initial	strike	delivered
by	 the	 curvature	 perturbation	 at	 the	 end	 of	 inflation:	 Figure	 8.9	 is	 a	 visual
representation	of	that	sound.

An	analogy	might	be	helpful.	Imagine	tossing	a	handful	of	pebbles	onto	the
surface	 of	 a	 pond	 so	 they	 all	 land	 at	 the	 same	 time.	 This	 creates	 a	 set	 of
disturbances	 in	 the	water,	which	 gradually	 evolve	 into	 a	 series	 of	 overlapping
circles.	 Like	 water,	 the	 primordial	 plasma	 was	 a	 medium	 that	 supported	 the
propagation	 of	 waves,	 and	 the	 disturbances	 generated	 by	 the	 curvature
perturbation	evolved	in	much	the	same	way.	On	the	two-dimensional	surface	of
the	water,	the	pebbled-induced	waves	make	circles,	but	in	the	three-dimensional
plasma	the	waves	are	spherical	shells.	Each	and	every	point	in	Figure	8.8	acted
as	an	initial	source	for	an	outwardly	propagating	spherical	shell:	you	can	think	of
the	 shells	 as	 sound	waves	 forging	 through	 the	plasma.	Sound	waves	 in	 air	 are
moving	variations	 in	density,	and	so	were	 the	waves	 in	 the	primordial	plasma,
but	in	this	case	it	is	the	density	of	photons,	electrons	and	nuclei	that	varies	as	the
wave	 travels.	 Under-and	 over-dense	 spots	 in	 the	 original	 plasma	 produced
density	waves,	while	spots	of	average	density	produced	no	waves	at	all.

Crucially,	because	the	perturbations	in	the	initial	plasma	were	seeded	at	the
same	time	at	 the	end	of	 inflation	(i.e.	at	 the	Big	Bang),	 the	spherical	waves	all
had	the	same	radius	380,000	years	later,	at	the	time	of	recombination.	Contrast
this	with	what	would	happen	if	you	threw	pebbles	into	a	pond	one	at	a	time:	the
pebbles	 tossed	 in	 first	 would	 make	 waves	 with	 a	 larger	 radius	 than	 pebbles
tossed	in	later,	and	the	net	result	would	be	a	whole	bunch	of	circular	waves,	all
of	 different	 radii.	 The	 peaks	 in	 Figure	 8.9	 are	 visible	 because	 the	 waves
generated	after	inflation	ended	were	all	released	at	the	same	time.

The	 details	 of	 the	 peaks	 are	 sensitive	 to	 how	 the	 plasma	 was	 originally
disturbed.	We	 have	 pictured	 the	 initial	 disturbance–the	 kick	 of	 the	 bucket–by
imagining	a	plasma	that	 is	created,	squashed	and	stretched	from	point	 to	point,
as	a	result	of	the	curvature	perturbation	generated	by	quantum	fluctuations	in	the
inflaton	field.	This	way	of	initiating	the	density	waves	within	the	plasma	is	akin



to	plucking	the	string	on	a	musical	instrument	by	pulling	it	to	one	side	and	then
releasing	 it.	 The	 waves	 in	 the	 plasma	 were	 initially	 released	 ‘from	 rest’.	 The
other	way	of	plucking	a	string	is	to	hit	it,	which	gives	it	a	kick	and	sets	it	moving
away	 from	 an	 initially	 undisturbed	 position.	 This	 kind	 of	 thing	 could
conceivably	 have	 happened	 to	 the	 plasma.	 In	 that	 case,	 there	 would	 not	 have
been	any	initial	variation	in	the	density	of	the	plasma.	Rather,	the	perturbations
would	have	been	initiated	by	plasma	flowing	into	or	out	of	each	region	of	space.
This	way	 of	 creating	 a	 disturbance	 in	 the	 plasma	 is	 known	 as	 an	 isocurvature
perturbation.	Curvature	and	isocurvature	perturbations	produce	different	sounds,
just	 as	 plucking	 or	 striking	 a	 stringed	 instrument	 produces	 different	 sounds.
Generally	 speaking,	 any	 kind	 of	 disturbance	 can	 be	 characterized	 as	 some
mixture	 of	 curvature	 and	 isocurvature	 perturbations,	 and	 different	 theories	 for
the	origin	of	 the	waves	 in	 the	plasma	predict	different	mixtures.	The	model	of
inflation	 we	 have	 been	 describing	 is	 particular	 in	 selecting	 only	 curvature
perturbations;	it	predicts	that	the	Universe	was	plucked.10	It	is	possible	to	create
more	sophisticated	models	of	inflation	that	generate	initial	conditions	that	are	a
mixture	 of	 curvature	 and	 isocurvature	 perturbations.	 However,	 the	 location	 of
the	 peaks	 in	 the	 Planck	 data	 indicates	 that	 curvature	 perturbations	 were
dominant.

Hopefully,	 you	 are	 starting	 to	 develop	 a	 feeling	 for	 what	 happened	 in	 the
plasma.	 It	 really	 is	 remarkably	 simple	 physics,	 and	 just	 goes	 to	 show	 that,
although	it	may	have	happened	a	very	long	time	ago,	when	the	Universe	was	a
very	 different	 place,	 it	 is	 not	 beyond	 our	 ken.	 In	 many	 ways,	 it	 is	 the	 world
around	us	today	that	is	complicated	and	hard	to	understand,	not	the	Universe	at
its	birth.	The	challenge	facing	us	is	to	dig	as	much	information	as	possible	out	of
the	primordial	sound	waves	captured	in	Figure	8.9.

To	 do	 this	 we’ll	 need	 to	 know	 more	 about	 how	 Figure	 8.9	 was	 actually
produced.	 Sticking	with	 our	 pond	 analogy	 for	 a	moment,	 if	 you	 threw	 a	 large
number	of	pebbles	into	a	pond,	and	then	took	a	photograph	of	the	pond	at	some
later	time,	it	could	be	pretty	hard	to	spot	that	 the	resulting	pattern	was	actually
produced	by	a	series	of	superimposed	circular	waves	of	equal	radii.	This	is	why
we	cannot	see	anything	like	circles	in	the	Planck	photograph	by	eye.	Things	are
made	even	more	complicated	by	the	fact	that	Planck	observes	a	two-dimensional
spherical	 slice	 through	 a	 three-dimensional	 snapshot	 of	 the	 myriad	 spherical
waves	in	the	plasma	at	the	time	of	recombination.	Fortunately,	astronomers	have
developed	techniques	to	sort	this	mess	out.	The	result	is	Figure	8.9.



Figure	8.10	The	temperature	fluctuations	in	the	Cosmic	Microwave

Background	are	highly	sensitive	to	the	key	numbers	governing	the

composition	of	the	Universe.	Notice	how	much	the	curves	change	as	we	vary

the	amounts	of	ordinary	matter,	dark	matter	and	dark	energy.	In	the	right-hand

graph,	the	red	and	green	curves	have	less	than	100%	of	the	critical	energy

density,	which	means	they	correspond	to	a	non-flat	geometry	for	the	Universe.

In	all	cases,	except	for	the	green	curve	in	the	right-hand	graph,	the	typical	size

of	the	initial	ripples	arising	after	inflation	is	the	same.	For	this	green	curve,	the

initial	ripples	were	chosen	to	be	smaller,	otherwise	the	curve	would	be	way	too

big.



The	first	step	in	appreciating	the	details	behind	Figure	8.9	is	to	know	that	it	is
derived	from	something	called	the	two-point	correlation	function.	This	function
tells	us	how	correlated	the	hot	and	cold	regions	are	on	the	sky.	For	example,	if
the	hot	regions	alone	were	all	spaced	by	1	degree,	the	correlation	function	would
be	large	and	positive	at	this	angle.	Or,	if	the	hot	regions	and	cold	regions	were
all	spaced	by	1	degree	then	the	correlation	function	would	be	large	and	negative
at	 this	 angle.	 If	 there	 is	 no	 correlation	 between	 the	 temperatures	 at	 different
points	on	the	sky,	the	correlation	function	would	be	equal	to	zero.	You	can	see
that	 the	 correlation	 function	 might	 provide	 a	 good	 way	 to	 spot	 whether	 the
plasma	was	perturbed	by	a	whole	bunch	of	superimposed	spherical	sound	waves,
and	that	it	could	inform	us	of	their	radii.	Indeed,	this	is	the	case,	as	the	positions
of	 the	peaks	 in	Figure	8.9	are	 related	 to	 the	radius	of	 the	spheres.11	 In	Box	15
(pp.	254–7)	we	give	a	much	more	detailed	description	of	the	physics	responsible
for	 Figure	 8.9.	 It	 is	 particularly	 important	 to	 emphasize	 that	 if	 the	 spherical



shells	were	 not	 all	 of	 the	 same	 size,	 there	would	 not	 be	 any	 peaks.	 The	mere
existence	of	the	peaks	in	Figure	8.9	informs	us	that	the	structure	in	the	Universe
was	 laid	 down	 once	 and	 for	 all	 at	 the	 time	when	 the	 sound	waves	 were	 first
launched.	 Inflation	 provides	 a	 means	 to	 orchestrate	 this	 grand	 opening	 to	 the
Universe.

There	 is	 even	 more	 information	 hiding	 in	 the	 details	 of	 Figure	 8.9.	 The
photons	 received	 by	 Planck	 all	 began	 their	 journey	 from	 the	 surface	 of	 last
scattering	 almost	 14	billion	years	 ago,	 as	 illustrated	 in	Figure	8.5.	This	means
that	 we	 are	 looking	 from	 a	 vast	 distance	 at	 a	 pattern	 built	 up	 from	 lots	 of
spherical	waves.	The	size	of	 the	spheres	we	see	 in	 the	CMB	from	our	vantage
point	 on	Earth	 therefore	 depends	 on	 two	 separate	 things.	 Firstly,	 the	 observed
size	 obviously	 depends	 on	 the	 actual	 size	 of	 the	 spheres	 at	 the	 time	when	 the
CMB	photons	were	released	from	the	plasma,	which	is	determined	by	the	speed
at	which	sound	waves	moved	through	the	plasma.	And,	secondly,	their	observed
size	depends	on	the	distance	to	the	surface	of	last	scattering,	which	is	given	by
the	expansion	history	of	the	Universe:	that	is,	the	more	distant	the	surface	of	last
scattering,	 the	 smaller	 the	 spheres	 will	 appear.	 As	 we’ve	 seen,	 this	 distance
depends	on	how	much	 the	Universe	has	expanded	during	 the	 time	 the	photons
have	been	 travelling	 to	Earth,	and	 this	 is	 related	 to	 the	amount	of	matter,	dark
matter	 and	dark	 energy	 in	 the	Universe.	The	 fact	 that	 the	observed	 size	of	 the
spherical	sound	waves	depends	on	the	expansion	history	of	the	Universe	is	one
reason	why	Figure	 8.9	 can	 be	 used	 to	 help	 us	 determine	 how	much	 and	what
types	of	matter	there	are	in	the	Universe.	If	you	want	to	know	more,	then	take	a
look	at	Box	15.

We	 can	 get	 a	 good	 feeling	 for	 just	 how	 sensitive	 Figure	 8.9	 is	 to	 the
composition	of	the	Universe	by	showing	some	curves	for	what	it	would	look	like
if	 we	 changed	 the	 amounts	 of	matter	 in	 the	 Universe.	 The	 left-hand	 graph	 in
Figure	8.10	shows	how	the	theoretical	prediction	changes	as	the	relative	amounts
of	 ordinary	matter	 and	 dark	matter	 are	 altered	 (the	 sum	of	 the	 two	being	 held
fixed).	If	you	worked	through	the	Box	then	you	might	be	able	to	figure	out	why
the	curves	 look	as	 they	do.	The	 right-hand	graph	emphasizes	how	hard	 it	 is	 to
make	the	theory	agree	with	the	data,	and	therefore	how	impressive	it	is	that	the
sweet	 spot	 of	 near-perfect	 agreement	 occurs	 using	 the	 same	 numbers	 we
harvested	in	the	last	chapter	using	other	astrophysical	observables.	If	there	was
something	wrong	with	our	understanding	of	this	vast	swathe	of	physics,	it	is	very
hard	to	see	how	we	would	get	such	beautiful	agreement.



We’ve	 been	 focusing	 a	 lot	 on	 the	 way	 that	 the	 initial	 perturbations	 in	 the
primordial	plasma	led	 to	 the	microwave	background,	but,	as	we	said,	 the	same
initial	perturbations	also	led	to	the	formation	of	the	galactic	structures	we	see	in
the	SDSS	map	(	Figure	8.1).	The	fact	that	the	simulations	like	those	in	Figure	8.4
agree	with	observations	is	strong	evidence	that	the	model	is	good.	There	is	also	a
very	 striking	 way	 to	 see	 the	 imprint	 of	 those	 sound	 waves	 in	 the	 primordial
plasma.

We	 have	 seen	 that,	 at	 the	 time	 of	 recombination,	 the	 plasma	 tended	 to	 be
over-dense	 in	 spherical	 shells	 as	 the	 sound	 waves	 travelled	 outwards	 from
initially	 over-dense	 regions.	 This	 means	 that,	 at	 the	 time	 of	 recombination,
protons	tended	to	have	a	higher-than-average	chance	of	being	in	these	spherical
shells.	These	are	the	same	protons	that,	much	later	in	the	history	of	the	Universe,
formed	the	hydrogen	gas	that	collapsed	to	form	galaxies.	The	original	spherical
shells,	 slightly	 richer	 in	 protons	 than	 the	 surrounding	 regions,	 grew	 with	 the
expansion	of	the	Universe,	and	(using	the	Friedmann	equation	again)	they	had	a
radius	of	around	150	Mpc	when	the	first	galaxies	were	formed.	The	situation	is
represented	schematically	in	Figure	8.11.	Here	is	a	direct	prediction:	if	we	play
the	same	game	as	we	did	for	the	CMB,	and	construct	a	correlation	function,	this
time	for	galaxies,	then	we	should	see	that	there	is	a	slight	tendency	for	pairs	of
galaxies	 to	 be	 separated	 by	 a	 distance	 of	 150	 Mpc.	 Figure	 8.12	 shows	 the
observational	 data	 and,	 quite	 remarkably,	 we	 can	 see	 that	 the	 prediction	 is
correct;	there	is	a	peak	in	the	correlation	function	at	150	Mpc.	Perhaps	we	really
do	understand	the	evolution	of	the	Universe,	from	a	time	before	the	Big	Bang	all
the	way	through	to	the	present	day.



Figure	8.11	Baryon	Acoustic	Oscillations	mean	that	there	is	a	higher	than

average	probability	of	finding	pairs	of	galaxies	that	are	separated	by	around

150	Mpc.



Figure	8.12	The	two-point	correlation	function,	which	shows	that	galaxies	are

mainly	found	to	be	close	together	(hence	the	rise	at	low	distances).	Far	more

interesting	is	the	little	bump	at	150	Mpc.	This	is	exactly	what	would	be

expected	if	the	galaxies	formed	preferentially	on	over-dense	regions

corresponding	to	the	expanded	shells	which	that	the	imprint	of	the	earlier

plasma	sound	waves.	The	solid	curve	is	the	prediction	using	the	same

parameters	as	were	used	to	produce	the	curve	in	Figure	8.9.

BOX	15.	SOUND	WAVES	IN	THE	PRIMORDIAL	PLASMA



Figure	8.13:	Adding	together	three	plane-wave	disturbances	in	a	cube	of

plasma	to	produce	the	pattern	of	ripples	indicated	in	the	fourth	cube.

Absolutely	any	pattern	of	plasma	disturbances	can	be	built	by	adding

together	plane-wave	disturbances	in	different	combinations.

We	want	to	understand	how	the	peaks	in	the	Planck	graph	relate	to
the	 radius	 of	 the	 spherical	 shells.	 To	 do	 this,	 we	 are	 going	 to
introduce	an	entirely	different,	but	totally	equivalent,	way	of	thinking
about	 waves	 in	 the	 plasma	 (or	 in	 a	 tank	 of	 water,	 or	 in	 the	 air).
Figure	 8.13	 shows	 how	 it	 is	 possible	 to	 think	 of	 a	 pattern	 of
disturbances	 as	 being	 due	 to	 plane	 waves	 in	 combination.	 Plane
waves	are	special	waves,	like	the	three	to	the	left	of	the	equals	sign
in	Figure	8.13.	It	is	clear	why	they	are	called	plane	waves:	they	look
like	stacked	planes.	The	light	and	dark	regions	correspond	to	places
where	 the	 wave	 is	 big	 and	 small.	 The	 waves	 we	 have	 in	 mind
correspond	 to	 variations	 in	 the	 density	 of	 the	 plasma	 in	 the	 early
Universe–but,	 on	 a	 more	 down-to-earth	 level,	 they	 could	 be
variations	in	the	density	of	the	air	in	a	room	as	a	sound	wave	travels
through	 it.	The	 three	plane	waves	 in	Figure	8.13	 just	happen	all	 to
have	 the	 same	 wavelength	 (the	 distance	 between	 successive
planes,	indicated	by	λ	in	the	figure)	and	they	are	all	arranged	at	right
angles	 to	each	other.	This	 is	why	 the	 resultant	pattern	obtained	by
adding	 them	 together	 is	so	 regular.	But	 there	 is	nothing	 to	stop	us
building	 patterns	 by	 adding	 together	 plane	 waves	 of	 different
wavelengths	and	orientations.	 It	doesn’t	 take	 too	much	 imagination
to	appreciate	that	it	might	be	possible	to	construct	any	particular	set
of	disturbances	in	the	plasma	by	adding	together	a	large	number	of
plane	waves.	The	 idea	of	 building	 ripples	 in	 the	plasma	by	adding
together	a	bunch	of	plane	waves	is	simply	for	our	convenience;	it	is
a	means	to	an	end.	The	virtue	of	thinking	like	this	becomes	evident
when	 we	 consider	 what	 happens	 to	 one	 particular	 plane	 wave	 as
time	advances.

Figure	 8.14	 shows	 a	 slice	 through	 a	 plane	 wave,	 and	 the
sinusoidal	 wave	 below	 it	 indicates	 how	 the	 density	 in	 the	 plasma
varies	along	the	wave.	We	are	imagining	that	this	particular	wave	is
one	of	many	plane	waves	 that	must	be	added	together	 to	describe



the	 plasma	 as	 it	 is	 delivered	 to	 us	 at	 the	 end	 of	 inflation.	 At	 time
zero,	this	wave	is	released	into	the	plasma.	By	this	we	mean	that,	at
time	zero,	the	plasma	was	squashed	and	squeezed	in	the	pattern	of
a	plane	wave.	A	short	time	after,	the	particles	in	the	plasma	will	start
to	move	as	 they	are	 pushed	away	 from	 the	higher-density	 regions
where	 the	 pressure	 is	 greatest.	 This	 happens	 across	 the	 entire
wave,	the	net	result	being	that	we	can	think	of	what	happens	as	the
formation	of	two	waves,	each	half	the	size	of	the	original	wave.	One
of	 these	waves	moves	 to	 the	 left	 at	 the	 speed	of	 sound;	 the	other
moves	to	the	right.	We	must	add	together	the	two	waves	to	ascertain
the	net	effect.	This	is	illustrated	in	the	figure	for	two	moments	shortly
after	time	zero.	Notice	that	thet	resultant	wave	is	the	same	shape	as
the	original	one;	all	 that	 is	changing	 is	 its	size.	 In	other	words,	 the
original	wave	simply	oscillates	in	size,	first	getting	smaller	and	then
growing	 back	 again.	 For	 example,	 there	will	 be	 a	 time	when	 each
half-wave	has	 travelled	exactly	one	quarter	of	a	wavelength.	When
that	happens,	the	peaks	in	one	wave	will	coincide	with	the	troughs	in
the	 other	 and	 the	 two	 will	 exactly	 cancel	 each	 other	 out.	 At	 this
moment,	 the	 plasma	 will	 be	 perfectly	 uniform.	 However,	 this	 is	 a
fleeting	moment	because	the	particles	in	the	plasma	are	moving	and
they	overshoot	perfect	uniformity.	At	 the	 time	when	 the	 two	waves
have	travelled	exactly	half	of	one	wavelength,	the	initial	plane	wave
will	be	inverted;	initially	high-density	regions	will	now	be	low-density
regions,	 and	 vice	 versa.	 The	 net	 result	 of	 all	 of	 this	 is	 that,	 if	 you
were	 located	somewhere	 in	 the	plasma,	 the	plasma	 in	your	vicinity
would	oscillate	periodically	between	high	and	low	density.	The	time
between	successive	peaks	in	intensity	is	the	time	it	takes	those	two
half-waves	to	travel	one	full	wavelength	(then	they	will	have	exactly
passed	through	each	other	once),	i.e.	the	period	of	oscillation	of	the
standing	wave	is	equal	to	T	=	λ/v,	where	v	is	the	speed	of	sound	in
the	plasma	(the	speed	at	which	waves	travel	through	it).

The	 Planck	 image	 is	 a	 snapshot	 of	 the	 plasma	 at	 the	 time	 of
recombination,	as	viewed	from	the	Earth.	To	obtain	the	behaviour	of
the	 plasma,	 we	must	 combine	 the	 effect	 of	 many	 plane	 waves	 of
different	 wavelength.	 Using	 what	 we	 have	 just	 learned,	 we	 can
determine	 which	 standing	 waves	 will	 correspond	 to	 the	 biggest
disturbances	 in	 the	 plasma	 at	 recombination.	 Although	 all	 the



standing	waves	were	originally	as	big	as	they	can	be	(i.e.	all	waves
started	 out	 by	 diminishing	 in	 size–the	 Universe	 was	 ‘plucked’,	 as
illustrated	in	Figure	8.14),	each	oscillates	with	a	different	time	period,
and	only	waves	of	certain	wavelengths	will	be	big	again	at	the	time
of	 recombination.	Specifically,	 the	biggest	waves	will	 be	 those	 that
have	 undergone	 either	 an	 integer	 or	 a	 half-integer	 number	 of
oscillations	at	 recombination.	Standing	waves	 that	have	undergone
an	integer	number	of	oscillations	look	exactly	like	the	original	wave,
while	 those	 that	 have	 undergone	 a	 half-integer	 number	 of
oscillations	look	pretty	much	the	same,	except	that	the	high-density
regions	and	low-density	regions	are	interchanged.	Waves	that	have
undergone	a	quarter-integer	number	of	oscillations	will	not	produce
any	disturbance	at	 the	 time	of	 recombination.	 This	means	 that	 the
biggest	 waves	 at	 recombination	 will	 have	 a	 wavelength	 equal	 to
2vT/n,	where	T	is	the	time	of	recombination	and	n	is	an	integer	(n	=
1,	2,	3,…).1

Figure	8.14:	How	standing	waves	are	produced	in	the	primordial	plasma.



Figure	8.14:	How	standing	waves	are	produced	in	the	primordial	plasma.

The	top	image	represents	a	slice	through	a	plane	wave.	The	graph

immediately	below	it	shows	how	the	density	varies	along	the	wave.	The

graph	below	that	is	what	happens	a	little	later,	when	the	original

disturbance	has	started	to	propagate	through	the	plasma.	One	half	of	it

heads	off	to	the	left,	the	other	half	to	the	right.	The	bottom	graph	shows

the	situation	still	later,	when	the	two	half-waves	have	travelled	through

each	other	even	more.	The	three	graphs	on	the	right	are	the	resultant

waves	formed	by	adding	together	the	half-waves.	The	resultant	wave	is

the	same	shape	as	the	original	but	the	size	is	diminishing.	This	is	a

standing	wave.

Now,	we	can	make	the	link	to	Figure	8.9,	the	graph	mapping	out
the	ripples	in	plasma	at	the	time	of	recombination.	The	mathematical
processing	of	the	raw	Planck	photograph	that	 leads	to	this	figure	is
specifically	 designed	 to	 help	 us	 see	which	 plane	waves	 are	 big	 at
the	 time	of	 recombination.	To	be	precise,	 the	angle	marked	on	 the
horizontal	 axis	 is	 the	 angle	 between	 successive	 peaks	 in	 plane
waves	 that	 were	 oriented	 across	 the	 line	 of	 sight	 at	 the	 time	 of
recombination.	 This	 means	 that	 waves	 of	 shorter	 wavelength
contribute	 to	Figure	8.9	at	smaller	angles.	The	 first	peak	occurs	at
an	 angle	 of	 close	 to	 1	 degree,	 which	 tells	 us	 that	 1/360	 =	 λ/2πR,
where	 R	 is	 the	 distance	 the	 CMB	 photons	 have	 had	 to	 travel	 to
reach	Earth.	Given	what	we	just	did	in	the	last	paragraph,	we	know
that	λ=	2vT	(corresponding	to	n	=	1),	which	means	that	the	position
of	the	first	peak	tells	us	that	the	speed	of	sound	through	the	plasma
is	equal	to	π/360	×	(R/T).	The	values	of	R	and	T	are	 influenced	by
the	 amount	 and	 type	 of	 the	 stuff	 that	 is	 causing	 the	 Universe	 to
expand,	because	that	is	what	controls	when	recombination	happens
(which	fixes	T),	and	how	far	the	CMB	photons	have	to	travel	before
they	reach	our	telescopes	(which	fixes	R).	You	should	now	be	able
to	 appreciate	 why	 the	 CMB	 graph	 in	 Figure	 8.9	 can	 be	 used	 to
extract	 information	 on	 how	 fast	 the	 plasma	waves	 travel	 (which	 is
governed	by	the	composition	of	the	medium	in	which	they	exist)	and
how	 much	 the	 Universe	 has	 expanded	 since	 the	 CMB	 photons
started	 their	 journey	 (because	 increasing	 the	amount	 of	 expansion
increases	the	distance	the	photons	must	travel	to	reach	Earth,	which
in	turn	reduces	the	angle	any	particular	plane	wave	subtends	on	the



sky).
So	far,	our	focus	has	been	on	the	positions	of	the	peaks,	but	the

heights	of	the	peaks	contain	information	too.	The	general	trend	is	for
the	 peaks	 to	 diminish	 in	 height	 as	 the	 angle	 decreases,	 which
means	 that	 the	 standing	 waves	 of	 smaller	 wavelength	 were	 less
prominent	than	the	longer-wavelength	ones	at	recombination.	This	is
because	 the	 photons	 bounce	 around	 inside	 the	 plasma	 and	 this
produces	 a	 blurring	 of	 the	 standing	 waves,	 that	 is,	 peaks	 and
troughs	 are	 smeared	 out	 by	 a	 distance	 determined	 by	 how	 far	 a
typical	 photon	 travels	 between	 successive	 collisions	 with	 the
electrons	and	protons.	If	this	distance	is	larger	than	the	wavelength
of	a	standing	wave,	then	that	wave	will	be	washed	out.	The	decline
in	size	of	the	acoustic	peaks	is	because	of	this	gradual	dissolution	of
the	 standing	 waves.	 This	 logic	 also	 implies	 that	 there	 will	 be	 less
damping	of	 the	short-wavelength	waves	 if	 there	are	more	electrons
and	protons	in	the	plasma,	because	this	is	what	controls	the	typical
distance	 a	 photon	 travels	 between	 collisions:	 if	 there	 are	 very	 few
charged	 particles,	 the	 original	 waves	 will	 dissolve	 as	 the	 photons
simply	 stream	 away	 from	 the	 regions	 of	 high	 density.	 That’s	 nice
then:	 the	heights	of	 the	peaks	are	sensitive	 to	 the	charged	particle
density	in	the	plasma.

The	cherry	on	 the	cake	 is	 the	 fact	 that	 careful	 inspection	of	 the
graph	reveals	that	 the	odd-numbered	peaks	are	boosted	relative	to
their	adjacent	even-numbered	peaks.	Given	what	we	said	in	the	last
paragraph,	we	might	expect	the	heights	of	the	peaks	to	fall	steadily
as	 the	 angle	 decreases,	 corresponding	 to	 shorter	 wavelengths.
However,	 this	 isn’t	 quite	 what	 happens.	 This	 failure	 of	 the	 peak
heights	 to	 steadily	 reduce	 is	 particularly	 visible	 if	 we	 look	 at	 the
second	 and	 third	 peaks,	 which	 are	 almost	 the	 same	 size.	 This
boosting	of	the	odd-numbered	peaks	is	a	direct	consequence	of	the
fact	 that	 the	 plasma	 is	 oscillating	 in	 a	 background	 of	 dark	matter,
which	tends	to	gravitationally	attract	the	charged	particles	towards	it.
This	 has	 no	 effect	 on	 the	 standing	 wave	 pattern	 after	 each	 full
oscillation,	 because	 each	 standing	wave	 always	 rebounds	 back	 to
the	same	starting	point.	But	it	does	have	an	effect	on	how	deeply	the
plasma	is	able	to	compress	before	it	rebounds	back.	Increasing	the
density	 of	 the	 charged	 particles	 in	 the	 plasma	 causes	 the	 half-



integer	 oscillations	 to	 be	 more	 intense,	 which	 boosts	 those	 odd-
numbered	peaks.

We	have	only	touched	on	the	most	important	ideas	here–but	it	is
deeply	 satisfying	 that	 every	 feature	 of	 the	 CMB	 graph	 can	 be
accounted	for	with	basic	physics.



9.	OUR	PLACE

We	have	 travelled	 a	 long	way	 from	 those	 idle	 contemplations	 on	 the	 beach	 at
Ogmore-by-Sea.	We	 have	 followed	 in	 the	 footsteps	 of	many	 ordinary	 people,
who	 took	 their	musings	 seriously	 enough	 to	 act	 on	 them	 and	 spent	 their	 lives
trying	 to	 understand.	 Standing	 on	 the	 seashore,	 Mike	 Seymour	 noticed
something	that	piqued	his	curiosity.	That	inquisitiveness,	that	spirit	of	enquiry,	is
the	thing	that	leads	us	to	become	scientists	and	take	seriously	the	questions	we
have	about	the	world.	Back	in	the	eighteenth	century,	Henry	Cavendish’s	urge	to
quantify	 gravity	 and	 measure	 the	 mass	 of	 the	 Earth	 unlocked	 the	 power	 of
Newton’s	laws.	He	dared	to	imagine,	but	he	also	dared	to	conduct	an	experiment
that	 required	 painstaking	 effort,	 meticulous	 craftsmanship	 and	 integrity.	 He
undertook	to	question	every	aspect	of	his	measurements	and	was	never	going	to
allow	himself	to	be	swayed	by	his	own	preconceptions	or	by	pressure	from	his
rivals.	Today,	big	advances	are	often	made	by	large	collaborations	of	people,	but
the	 motivation	 is	 just	 the	 same.	 The	 Planck	 satellite	 project	 and	 the	 Large
Hadron	Collider	project	at	CERN	involve	thousands	of	scientists	rather	than	one,
but	 the	 only	 real	 difference	 is	 that,	 because	 of	 the	 complexity	 of	 the
measurements	they	need	to	make,	a	bunch	of	enthusiasts	had	to	club	together	to
build	 the	 experiments	 and	analyse	 the	data.	The	powerful	desire	 to	understand
brings	 people	 together	 from	 all	 over	 the	 world	 in	 these	 large	 international
collaborations.	National	 boundaries	 dissolve	 and	 are	 replaced	 by	 an	 unfettered
spirit	of	co-operation.	This	spirit	is	one	of	the	great	joys	of	science,	and	because
of	it	great	things	happen.

Throughout	 this	 book	 we	 have	 shown	 how	 people	 have	 gone	 about
measuring	 things	 and,	 in	 so	 doing,	 demonstrated	 a	way	 to	 accumulate	 reliable
knowledge.	Our	thoughts	have	led	us	outwards	from	the	Earth	to	the	stars,	and	to
the	 galaxies	 beyond.	 Eventually,	 we	 have	 reached	 a	 point	 where	 we	 can
seriously	 consider	 the	 origins	 of	 the	 Universe.	 If	 we	 lift	 our	 gaze	 from	 the
parochial	and	anthropocentric,	the	cosmos	awaits	us	in	humbling,	awe-inspiring
glory.

It	 is	 staggering	 to	 suggest	 that	 the	 entire	 observable	Universe	 came	 from	a
subatomic-sized	patch	of	space,	but	the	theory	of	inflation	accounts	for	how	such



a	patch	evolved	into	the	Universe	we	inhabit.	The	theory	leads	to	a	Big	Bang	and
generates	 a	 pattern	 of	 initial	 perturbations	 that	 has	 been	 confirmed	 by	 precise
measurements	 of	 the	 Cosmic	 Microwave	 Background	 and	 the	 clustering	 of
galaxies.	What’s	more,	 inflation	predicts	 the	 existence	of	 primordial	 ripples	 in
spacetime	that	may	be	observable	today	as	gravitational	waves:	the	measurement
of	these	would,	for	many	people,	be	the	clinching	piece	of	evidence	confirming
that	inflation	really	did	happen.	Work	towards	that	goal	is	underway.

Inflation	certainly	provides	a	vivid	account	of	 the	origins	of	 the	observable
Universe.	 It	 is	 a	 daring	 theory	 with	 high	 ambition.	 However,	 what	 we	 have
presented	 so	 far	 is	 positively	 prosaic	 when	 compared	 to	 inflationary	 theory’s
most	 astonishing	 prediction:	 that	 our	 visible	 Universe	 might	 be	 just	 one	 of	 a
possibly	infinite	number	of	universes.

In	 the	 last	chapter,	we	saw	some	movie	stills	of	our	patch	of	Universe	as	 it
evolved	 during	 inflation.	Our	 particular	 patch	 started	 out	 tiny,	 and	 there	 is	 no
reason	to	think	that	it	was	anything	other	than	one	small	part	of	a	much	bigger
space,	which	may	 be	 infinite	 in	 extent.	We	 chose	 to	 start	 the	movie	 sequence
when	 the	 observable	Universe	was	 big	 enough	 to	 start	 developing	 ripples	 but,
presumably,	 the	 rest	 of	 the	 space	 had	 already	been	 inflating	 for	 some	 time	by
then,	and	we	joined	the	story	part	way	through.	Over	the	following	few	million
million	million	million	million	millionths	of	a	second,	the	inflaton	field	caused
our	patch	to	grow	to	the	size	of	a	melon,	before	the	exponential	expansion	came
to	an	end	as	the	energy	driving	it	ran	out.

Let’s	 now	 consider	 what	 was	 happening	 in	 the	 rest	 of	 the	 inflationary
Universe.	We	 have	 said	 that	 the	 inflaton	 field	 gradually	 faded	 as	 it	 drove	 the
expansion	of	our	patch	and	ultimately	decayed	away	completely	at	the	Big	Bang.
This	 implies	 that	 the	inflaton	field	would	have	been	bigger	 in	 the	past,	and	the
acceleration	of	 the	 expansion	of	 space	more	 rapid.	This	 is	 an	 ‘on	 the	average’
statement,	 because	 the	 size	 of	 the	 inflaton	 field	 actually	 varied	 from	 place	 to
place	because	it	had	quantum-induced	ripples	in	it,	and	the	places	where	the	field
was	 bigger	 than	 average	 would	 have	 inflated	 more	 rapidly.	 In	 our	 patch,	 the
ripples	were	small;	 their	main	effect	was	to	sow	the	seeds	that	gave	rise	 to	 the
perturbations	in	the	CMB	and	the	network	of	galaxies	that	fill	the	sky	today.

Now,	 here	 is	 a	 crucial	 piece	 of	 information:	 when	 the	 inflaton	 field	 was
larger,	 the	 ripples	were	 larger	 too.	As	we	go	back	 in	 time,	we	see	 the	 inflaton
field	 fluctuating	 more	 and	 more	 wildly;	 the	 tiny	 ripples	 in	 a	 still	 ocean	 were
preceded	by	huge	waves	on	a	stormy	sea.	We	can	think	of	the	situation	another
way,	 using	 an	 idea	 from	 the	 last	 chapter.	 During	 inflation,	 space	 glows	 with



particles,	 and	 the	 glow	becomes	more	 intense	 as	we	 look	 further	 into	 the	 past
and	the	acceleration	of	the	space	increases.

Figure	9.1	The	Multiverse.	Note	that	the	scale	here	is	wrong:	the	typical

distance	between	bubbles	is	vastly	bigger	than	their	sizes.	Our	type	of

universe	might	be	relatively	rare	in	being	old	enough	and	big	enough	to

support	the	evolution	of	intelligent	life.

We	 have	 said	 that	 the	 size	 of	 the	 inflaton	 field	 steadily	 falls	 as	 inflation
progresses	 and	 that	when	 it	 falls	 below	a	 certain	 level	 inflation	 ends.	At	 early
enough	times,	however,	this	was	not	necessarily	the	case,	because	the	ripples	in
the	inflaton	field	were	so	dramatic	that	some	regions	received	fluctuations	large
enough	 to	 cause	 the	 inflaton	 field	 to	 increase	 in	 size,	 notwithstanding	 the
dilution	 during	 the	 expansion.	 In	 those	 regions,	 inflation	 would	 have	 sped	 up
instead	of	slowing	down.	If	regions	like	this	are	created	at	a	sufficient	rate,	there
will	always	be	some	parts	of	space	that	are	inflating	and	inflation	carries	on	for
ever.	There	will	still	be	regions	where	the	field	is	not	so	big,	and	inflation	will
end	in	these	regions,	giving	rise	to	Big	Bangs.	Our	observable	Universe	emerged
from	one	such	region.	In	this	scenario,	the	entirety	of	space	contains	bubbles	of



universe	where	inflation	has	ceased,	 isolated	from	each	other	by	regions	where
inflation	is	ongoing.	This	is	known	as	the	inflationary	Multiverse.

In	the	Multiverse,	universes	are	being	created	out	of	nothing,	and	this	seems
wrong.	For	one	thing	it	appears	to	violate	the	law	of	energy	conservation,	which
states	that	the	total	amount	of	energy	in	a	closed	system	does	not	change.	This	is
not	a	problem	in	General	Relativity;	there	is	nothing	wrong	with	the	idea	of	an
expanding	space	in	which	the	total	energy	carried	by	its	contents	changes.	This
idea	 is	manifest	 in	 our	 observable	Universe;	 as	 space	 expands,	 the	 photons	 it
contains	 are	 redshifted.	 This	 is	 the	 effect	 that	 we	 used	 to	measure	 the	 rate	 at
which	space	is	expanding	in	Chapter	6.	Quantum	theory	tells	us	that	the	energy
of	 a	 photon	 is	 inversely	 proportional	 to	 its	 wavelength,	 so,	 as	 the	 photon’s
wavelength	is	stretched	by	the	expansion	of	space,	its	energy	falls.	This	is	why
the	 Cosmic	Microwave	 Background	 temperature	 is	 only	 3	 kelvin	 today,	 even
though	 it	 was	 emitted	 at	 a	 temperature	 of	 3000	 kelvin	 at	 the	 time	 of
recombination.	Evidently,	 the	 total	energy	of	an	expanding	universe	containing
only	 photons	 falls.	 The	 opposite	 is	 true	 for	 a	 universe	 expanding	 due	 to	 a
cosmological	 constant.	 In	 this	 case,	 the	 energy	 density	 in	 space	 stays	 constant
even	 though	 space	 is	 expanding,	which	means	 the	 total	 energy	 in	 the	universe
increases.

A	brief	recap	is	in	order.	We	introduced	the	inflaton	field	in	order	to	solve	the
horizon	and	 flatness	problems	 in	a	manner	consistent	with	 the	 laws	of	particle
physics	as	we	understand	them	today.	All	we	initially	wanted	to	do	was	to	create
a	theory	capable	of	describing	a	rapid	expansion	in	the	early	Universe,	and	just
look	where	it	has	taken	us.	Inflation’s	logic	has	pushed	us	into	an	explanation	for
the	origin	of	the	Big	Bang	and	the	distribution	of	galaxies	in	our	Universe,	not	to
mention	 the	 detailed	 structure	 of	 the	 CMB.	 Now	 we	 discover	 that	 the	 same
theory	 appears	 to	 predict	 that	 this	whole	 process	 probably	 happened	 over	 and
over	again,	 littering	 the	Multiverse	with	a	vast	number	of	bubble	universes,	of
which	 ours	 is	 just	 one.	 It	 may	 be	 that	 we	 will	 never	 be	 able	 to	 check
experimentally	if	there	really	is	a	Multiverse,	although	we	may	be	lucky.	Some
cosmologists	have	speculated	that	the	bubble	universes	might	collide	with	each
other	early	in	their	evolution,	and	that	this	may	have	left	a	faint	signature	waiting
for	 us	 in	 the	 CMB.	 Perhaps	 there	 are	 other,	 as	 yet	 unimagined,	 theoretical
developments	or	measurements	that	might	allow	us	to	infer	the	existence	of	the
Multiverse.

There	 is	 another	 popular	 idea	 in	 theoretical	 physics	 that,	 at	 first	 sight,	 has
little	 to	 offer	 us	 in	 our	 contemplations	 of	 the	Multiverse	 but	which,	 on	 closer



inspection,	turns	out	to	add	a	remarkable	metaphysical	twist.	For	a	large	part	of
our	scientific	lives,	String	Theory	has	been	dominant	in	the	holy-grail	quest	for	a
Theory	of	Everything,	bringing	together	quantum	theory	and	General	Relativity
into	a	beautiful	and	consistent	whole.	The	idea	is	that	everything	in	the	Universe
is	constructed	out	of	tiny	loops	and	strands	of	vibrating	‘string’.1	The	typical	size
of	a	piece	of	string	is	around	10−35	m,	which	is	a	hundred	billion	billion	times
smaller	than	a	proton–this	smallness	explains	why	we	might	have	hitherto	been
fooled	 into	 thinking	 that	 everything	 is	 made	 out	 of	 particles.	 String	 Theory
gathered	momentum	 in	 the	mid-1980s,	 especially	 following	 the	work	 of	Mike
Green,	 then	 of	Queen	Mary	College	 in	 London,	 and	Caltech’s	 John	 Schwarz.
This	was	when	String	Theory	started	to	be	taken	seriously	as	a	possible	Theory
of	Everything–theorists	realized	that	not	only	did	String	Theory	contain	General
Relativity,	it	also	gave	rise	to	physics	resembling	the	well-established	Standard
Model	of	particle	physics.	String	theorists	began	to	dream	that	there	may	be	only
one	logically	possible	theory,	and	that	this	theory	would	predict	all	of	the	laws	of
physics	 as	we	 experience	 them.	 It	would	 explain	 the	 values	 of	 all	 the	 particle
masses,	the	cosmological	constant	and	the	strengths	of	the	forces.	The	seductive
idea	 is	 that	 the	Universe	we	 live	 in	 is	 the	only	 logically	possible	universe,	and
that	 underlying	 everything	 is	 a	 perfect,	 unique	 mathematics.	 Subsequently,	 a
good	deal	of	progress	was	made	 towards	showing	how	the	 laws	of	physics	we
observe	today	could	emerge	out	of	String	Theory,	but	nobody	managed	to	find
the	holy	grail–the	one	theory	to	rule	them	all.

In	 practice,	 String	 Theory	 is	 complicated,	 because	 its	 mathematical
consistency	demands	the	strings	should	vibrate	in	a	ten-dimensional	spacetime.
Since	 we	 only	 experience	 four	 dimensions,	 the	 other	 dimensions	 need	 to	 be
hidden	from	us	in	some	way.	One	way	to	do	that	is	to	have	the	extra	dimensions
curl	up	into	tiny	geometrical	shapes	at	every	point	in	our	space;	so	tiny	that	we
simply	can’t	see	them.	A	familiar	analogy	would	be	to	imagine	a	hosepipe	at	the
bottom	 of	 a	 long	 garden.	 From	 sufficiently	 far	 away,	 it	 looks	 like	 a	 one-
dimensional	 line,	even	 though	 it	 is	 in	 fact	a	 two-dimensional	 surface	 rolled	up
into	a	cylinder.	In	such	a	picture,	our	experience	of	the	world	is	to	be	seen	as	a
coarse,	‘large	distance’	one,	and	the	laws	of	physics	we	encounter	 today	are	to
be	 regarded	 as	 emergent	 ‘low	 energy’	 approximations	 to	 the	 true	 theory.
Naturally	enough,	scientists	took	great	encouragement	from	the	fact	that	laws	of
Nature	resembling	those	we	know	emerge	from	String	Theory.

In	 the	 early	 years	 of	 the	 twenty-first	 century,	 however,	 the	 optimism	 was
tempered	by	the	gradual	realization	that	String	Theory	didn’t	predict	a	unique	set



of	 low-energy	 laws.	 Instead,	 it	 seemed	 to	 predict	 a	 grand	 array	 of	 possible
universes,	each	with	a	different	set	of	emergent	laws	that	are	distinguished	from
each	other	by	the	different	ways	that	those	extra	dimensions	in	space	are	curled
up.	 This	 prompted	Leonard	 Susskind,	 of	 Stanford	University,	 to	 introduce	 the
idea	 of	 a	 String	 Landscape.	 You	 might	 picture	 a	 vast	 landscape	 of	 hills	 and
valleys,	stretching	off	as	far	as	the	eye	can	see,	with	every	valley	corresponding
to	 a	 different	 possible	 universe	 with	 different	 low-energy	 physical	 laws.	 This
might	have	been	fine	if	there	were	only	a	handful	of	possibilities,	but	it	became
clear	 that	 there	could	be	as	many	as	10500	 low-energy	manifestations	of	String
Theory,	 and	 we	 appear	 to	 live	 in	 a	 universe	 described	 by	 one	 of	 them.	 In	 a
remarkable	about	turn,	many	string	theorists	went	from	seeking	a	unique	Theory
of	Everything	 to	exploring	a	 theory	 that	has	 the	potential	 to	enumerate	a	near-
infinite	variety	of	possible	worlds.

At	first	sight,	this	may	seem	like	a	terrific	disappointment–are	there	really	a
vast	number	of	possible	universes?	And	 if	 so,	how	can	we	possibly	 figure	out
why	 we	 live	 in	 the	 one	 we	 do?	 These	 questions	 echo	 those	 articulated	 by
Gottfried	von	Leibniz,	in	his	1710	work	Théodicée.	Leibniz	considered	the	idea
of	a	vast	number	of	possible	worlds	and	believed	that	we	inhabit	‘the	best	of	all
possible	 worlds’.2	 However,	 the	 ambiguous	 plethora	 of	 the	 String	 Landscape
raises	a	fascinating	alternative–might	all	of	these	possible	universes	actually	be
realized	in	the	vast	Multiverse	of	eternal	inflation?

The	central	 idea	of	 eternal	 inflation	 is	 that	 there	will	 always	be	portions	of
space	that	are	accelerating	rapidly	because	of	unavoidable	upward	fluctuations	in
the	 inflaton	 field.	 In	 these	 regions,	 the	 larger	value	of	 the	 inflaton	 field	causes
the	 energy	 density	 to	 increase	 and,	 at	 very	 high	 energy	 densities,	 we	 need
something	 like	 String	 Theory	 to	 compute	 what	 happens.	 Crucially,	 at	 such
energy	densities,	it	seems	to	be	possible	for	the	laws	of	physics	to	be	re-set,	as
the	 Universe	 makes	 a	 transition	 from	 one	 valley	 in	 the	 String	 landscape	 to
another.	Roughly	speaking,	the	tiny,	curled	up	extra	dimensions	unravel	and	re-
adjust;	it	is	as	if	space	is	melting	and	re-crystalizing	in	a	different	configuration.
This	mechanism	 for	moving	 about	 the	 String	Landscape	makes	 it	 possible	 for
different	bubble	universes	in	the	Multiverse	to	have	different	low-energy	laws	of
physics.

Viewed	 this	 way,	 String	 Theory	 and	 the	 inflationary	 Multiverse	 fit	 neatly
together.	 String	 Theory	 allows	 for	 the	 possibility	 that	 there	 are	 very	 many
different	 ways	 of	 arranging	 10-dimensional	 spacetime	 to	 produce	 different
emergent	laws	of	physics,	and	the	Multiverse	provides	a	mechanism	for	realizing



them	all.	According	to	the	theory	as	we	have	just	described	it,	although	different
bubble	 universes	will	 generally	 exhibit	 different	 low-energy	 laws,	 they	 are	 all
still	 governed	 by	 the	 same	 overarching	 laws	 of	 String	 Theory.	 Low-energy
observers	like	us	are	trapped	in	one	particular	valley	in	the	landscape,	and	that	is
what	 shapes	 our	 view	 of	 the	 Universe.	 Other	 vantage	 points	 in	 the	 landscape
would	 correspond	 to	 vastly	 different	 physics:	 different	 elementary	 particles,
different	forces	of	Nature,	and	even	different	dimensionalities	of	space.	Across
the	 Multiverse,	 this	 means	 there	 will	 be	 universes	 with	 stronger	 gravity	 and
vastly	larger	cosmological	constants,	universes	with	no	atoms	or	stars,	universes
filled	with	black	holes	and	universes	that	are	almost,	but	not	quite,	the	same	as
ours.	In	all	likelihood,	there	will	be	vastly	more	universes	than	there	are	atoms	in
our	observable	Universe.

If	what	we	just	described	 is	 really	 the	way	things	are,	 then	 the	 implications
for	how	we	view	our	place	in	the	cosmos	are	clearly	profound.	We	must	add	the
caveat,	 though,	 that	 the	 evidence	 for	 inflation	 itself	 is	 not	 yet	 absolutely
compelling,	and	we	have	no	firm	evidence	for	 the	validity	of	String	Theory	or
the	Multiverse.	Nevertheless,	 the	 case	 for	 the	Multiverse	 is	not	plucked	out	of
the	 head	 of	 an	 imaginative	 dreamer.	 It	 is	 built	 on	 a	 chain	 of	 reasoning	 that	 is
more	 or	 less	 compelling,	 depending	 on	 who	 you	 ask.	 And,	 of	 course,	 the
frontiers	 of	 science	 must	 always	 lie	 in	 the	 realm	 of	 speculation–collecting
evidence	can	be	a	lengthy	and	difficult	task.	One	of	the	major	challenges	facing
scientists	 today	 is	 to	 uncover	 the	 evidence	 that	 is	 needed	 before	 we	 can	 be
confident	in	the	theoretical	ideas	presented	in	this	chapter.

The	question	of	the	origin	of	our	Universe	is	obviously	of	immense	cultural
significance.	Are	we	the	result	of	an	intelligent	creator?	Is	there	a	reason	for	the
existence	 of	 the	 Universe?	 At	 first	 sight,	 modern	 physics	 offers	 some	 of	 the
strongest	 evidence	 in	 favour	 of	 the	 idea	 that	 the	 Universe	 was	 designed.	 The
fundamental	 laws	of	Nature	are	astonishingly	compact,	powerful	and	beautiful.
The	Standard	Model	of	particle	physics,	which	describes	how	all	of	the	particles
in	 the	 Universe	 interact	 with	 each	 other,	 is	 possessed	 of	 a	 high	 degree	 of
symmetry.	 When	 you	 work	 with	 the	 mathematics	 behind	 the	 physics	 it	 is
impossible	 not	 to	 be	 touched	 by	 its	 elegance;	 the	 equations	 make	 snowflake-
beautiful	 patterns	 that	 encode	 the	 laws	 of	 Nature.	 It	 is	 as	 though	 a	 brilliant
mathematician	 set	 up	 the	 Universe.	 This	 ‘unreasonable	 effectiveness	 of
mathematics’3	might	be	invoked	to	appeal	to	a	higher	intelligence,	as	is	done	by
the	Reverend	John	Polkinghorne	when	he	 states	 that4	 ‘[t]he	world	 that	 science
describes	seems	to	me,	with	its	order,	intelligibility,	potentiality,	and	tightly	knit



character,	to	be	one	that	is	consonant	with	the	idea	that	it	is	the	expression	of	the
will	of	a	Creator.’	Polkinghorne	knows	the	mathematics	well;	he	was	a	particle
physicist	and	professor	in	mathematical	physics	at	the	University	of	Cambridge
before	joining	the	priesthood.	Even	though	many	theoretical	physicists	do	not	go
so	 far	 as	 to	 invoke	 the	 idea	 of	 a	Creator,	 they	 are	 still	 deeply	 affected	 by	 the
remarkable	beauty	inherent	in	the	fundamental	equations	in	physics.

The	 argument	 for	 a	 Creator	 also	 appears	 to	 be	 bolstered	 by	 another
remarkable	aspect	of	the	natural	world:	the	laws	of	physics	seem	to	be	perfectly
adjusted	 in	order	 to	produce	a	Universe	 that	 is	hospitable	 to	 life.	To	apply	 the
fundamental	 laws	 of	 physics,	 as	 encoded	 in	 the	 Standard	Model	 and	 General
Relativity,	 it	 is	 necessary	 to	 first	 specify	 the	 values	 of	 around	 thirty	 numbers,
which	include	the	strengths	of	the	forces,	the	masses	of	the	particles	and	the	size
of	the	cosmological	constant.	Only	once	these	have	been	fixed	can	the	equations
be	 used	 to	 predict	 the	 outcomes	 of	 experiments	 and	 observations.	 Changing
these	numbers,	often	by	just	a	few	percent,	gives	rise	to	theoretical	universes	that
have	 no	 chance	 of	 supporting	 life.	 It	 is	 very	 easy	 to	 end	 up	with	 a	 theory	 in
which	 stars	 never	 form,	 or	 burn	 out	 in	 millions	 rather	 than	 billions	 of	 years,
leaving	 no	 time	 for	 biological	 evolution.	 The	 strengths	 of	 the	 forces	 seem
particularly	well	adjusted	to	avoiding	these	disaster	scenarios.	It	is	also	very	easy
to	end	up	with	a	theory	in	which	the	chemical	elements–the	necessary	building
blocks	of	all	complex	structures–do	not	exist	in	anything	like	the	form	we	know.
The	periodic	 table	 is	a	delicate	balancing	game,	and	it	appears	 to	be	extremely
difficult	 to	 pick	 values	 for	 the	 strengths	 of	 the	 forces	 and	 the	 particle	masses
such	 that	 the	 heavier	 elements,	 including	 carbon	 and	 oxygen,	 are	 produced	 in
stars	 and	 remain	 stable	 against	 radioactive	 decay.	 The	 expansion	 rate	 of	 the
Universe	is	also	‘just	so’:	it	would	be	easy	to	make	a	universe	in	which	matter
never	clumped	together,	which	 is	what	happens	 if	 the	cosmological	constant	 is
too	 big.	 There	would	 also	 be	 no	 stars	 or	 galaxies	 if	 there	were	 too	 little	 dark
matter	or	too	much	light.	Even	the	way	that	supernovae	explode,	scattering	the
heavy	 elements	 necessary	 for	 life	 across	 interstellar	 space,	 would	 be
significantly	 affected	 if	 the	 weak	 nuclear	 force	 was	 just	 a	 little	 weaker	 or
stronger	than	it	is.	Taken	at	face	value,	our	Universe	has	a	bespoke	feel	to	it.	In
the	words	of	the	great	theoretical	physicist	Freeman	Dyson:	‘As	we	look	out	into
the	Universe	and	identify	the	many	accidents	of	physics	and	astronomy	that	have
worked	together	to	our	benefit,	it	almost	seems	as	if	the	Universe	must	in	some
sense	have	known	we	were	coming.’

Obviously	 the	 numbers	 that	 characterize	 our	 Universe–such	 as	 the	 particle



masses	and	the	force	strengths–must	describe	a	universe	fit	for	life,	because	we
exist.	That	 is	 not	 at	 issue.	What	 is	 at	 issue	 is	 the	nature	of	 the	mechanism	 for
selecting	 those	numbers:	did	 the	mechanism	possess	a	creator-like	 foresight	or
not?	The	Multiverse	says	‘not’,	because	it	delivers	an	almost	inconceivably	rich
variety	of	bubble	universes	 that	manifest	all	of	 the	possible	 laws	of	physics.	 It
does	 this	 randomly,	 with	 no	 foresight,	 and	 it	 guarantees	 the	 existence	 of	 an
apparently	 unique	 universe	 such	 as	 ours.	 Viewed	 this	 way,	 our	 existence	 is
inevitable–along	with	the	existence	of	every	other	conceivable	universe.

The	Multiverse	idea	clearly	undermines	the	argument	for	a	Creator	based	on
the	fine-tuning	of	the	laws	of	Nature.	However,	it	does	not	quite	undermine	the
argument	 for	 what	 we	 might	 call	 a	 Creator-Mathematician.	 String	 Theory
potentially	provides	a	very	beautiful	mathematical	construction	 that	overarches
the	Multiverse,	and	the	origins	of	that	theory	remain	mysterious.	Perhaps	some
intelligence	 is	 responsible.	 But	 if	 you	 would	 still	 like	 to	 posit	 a	 Creator,	 the
Multiverse	 idea	 paints	 a	 striking	 picture	 of	 their	 methods.	 It	 seems	 that	 the
architect	of	our	Universe	set	about	their	task	by	creating	universe	after	universe.
For	each	universe,	the	laws	of	physics	were	selected	at	random–as	if	by	rolling
dice.	This	kind	of	 thing	is	reminiscent	of	what	scientists	do	when	they	want	 to
simulate	systems	they	do	not	understand	and	want	to	understand	better.	They	put
the	equations	that	generate	the	system	onto	a	computer	and	allow	the	system	to
evolve	 while	 they	 watch	 what	 happens,	 often	 choosing	 the	 key	 numbers	 that
determine	the	evolution	of	the	system	at	random	to	generate	a	wide	diversity	of
outcomes.	 The	 simulations	 of	 chunks	 of	 universe	 we	 presented	 in	 Chapter	 8
were	created	like	this.

Today,	 the	 cosmologists	 responsible	 for	 those	 simulations	 are	hampered	by
insufficient	computing	power,	which	means	that	 they	can	only	produce	a	small
number	of	simulations,	each	with	different	values	for	a	few	key	parameters,	like
the	 amount	 of	 dark	 matter	 and	 the	 nature	 of	 the	 primordial	 perturbations
delivered	at	 the	end	of	 inflation.	But	 imagine	 that	 there	are	super-cosmologists
who	know	the	String	Theory	that	describes	the	inflationary	Multiverse.	Imagine
that	 they	 run	 a	 simulation	 in	 their	 mighty	 computers–would	 the	 simulated
creatures	living	within	one	of	the	simulated	bubble	universes	be	able	to	tell	that
they	were	in	a	simulation	of	cosmic	proportions?

Science	has	made	an	astonishing	amount	of	progress	over	the	past	500	years.
Each	new	generation	of	scientists	has	benefited	hugely	from	the	often	herculean
efforts	 of	 those	 who	 went	 before,	 and	 today	 we	 find	 ourselves	 in	 the	 very
privileged	position	of	being	able	to	contemplate	and	to	compute	what	happened



at	 the	 birth	 of	 our	 Universe.	 The	 process	 of	 learning	 new	 things	 is	 not
mysterious,	 but	 there	 is	 romance	 in	 the	 endeavour.	 There	 is	 something	 truly
wonderful	about	the	determined	pursuit	of	seemingly	insignificant	details.	At	its
heart,	science	is	about	connecting	with	the	world;	it	is	a	living	celebration	of	the
Universe.	It	is	about	reaching	out	into	the	unknown	and	exploring	the	uncharted
landscape	of	ideas.	We	are	part	of	the	greatest	of	mysteries,	and,	for	us,	 that	is
enough.



APPENDIX

The	following	is	a	list	of	some	basic	maths	and	physics	that	may	be	helpful.

POWERS	OF	10

In	 cosmology	 and	 particle	 physics	we	 often	 encounter	 numbers	 that	 are	 either
very	big	or	very	small.	To	help	write	such	numbers	we	use	exponential	notation.
For	 example,	 1	million,	which	 is	 equal	 to	 1,000,000,	 can	 be	written	 106.	 This
should	be	read	as	‘10	to	the	power	of	6’,	which	means	it	is	equal	to	10	multiplied
by	 itself	 6	 times.	 Tiny	 numbers	 are	 written	 with	 negative	 powers,	 so	 one
billionth,	which	is	equal	to	1/1,000,000,000	=	0.000000001,	is	written	10−9.

UNITS

Very	often	we	deal	with	quantities	that	carry	units.	The	simplest	example	might
be	a	distance,	such	as	1	kilometre	=	0.621	miles.	As	in	the	case	of	kilometres	and
miles,	 we	 always	 have	 the	 freedom	 to	 choose	 the	 units	 we	 want	 to	 use	 to
measure	 something.	 Although	 metres	 and	 kilometres	 are	 convenient	 units	 for
stating	 the	 typical	 distances	we	 encounter	 in	 our	 daily	 lives,	 they	 are	 not	 very
convenient	in	cosmology	and	particle	physics.	More	commonly	we	will	want	to
use	 light	 years,	 megaparsecs,	 ångstroms	 and	 nanometres.	 These	 can	 all	 be
converted	into	metres	as	follows:

1	light	year	=	9.46	×	1015	metres
1	megaparsec	=	1	Mpc	=	3.26	×	106	light	years
1	nanometre	=	10	ångstroms	=	10−9	metres
1	femtometre	=	10−15	metres

Likewise,	 in	 everyday	 circumstances	 it	 makes	 sense	 to	 measure	 energies	 in
joules	(e.g.	a	20	watt	light-bulb	radiates	energy	at	a	rate	of	20	joules	per	second),



but	when	discussing	particles	of	atom-size	and	smaller	 it	makes	more	sense	 to
use	the	electronvolt	(denoted	eV),	which	can	be	converted	into	joules	using:

1	eV	=	1.60	x	10-19	joules

We	will	often	abbreviate	units,	e.g.	1	nm	=	1	nanometre	or	1	km	=	1	kilometre	or
1	mega-electronvolt	=	1	MeV.

Numbers	 that	 carry	 with	 them	 an	 associated	 unit	 are	 called	 dimensionful
numbers,	 and	 it	 is	 common	 to	 want	 to	 combine	 dimensionful	 numbers	 by
multiplying	or	dividing	 them.	The	 simplest	 example	of	 this	 is	when	we	 take	a
distance	and	 then	divide	 it	by	a	 time	 in	order	 to	get	something	 that	 is	a	speed.
For	 example,	 a	 car	 moves	 100	 km	 in	 2	 hours,	 therefore	 its	 speed	 is	 100
kilometres	divided	by	2	hours	=	100	km/2	h	=	100	×	1	km/2/(1	h)	=	50	×	1	km/1
h	 =	 50	 km/h.	Obviously	 you	 could	 see	 that	 the	 car	moves	 at	 50	 km	 per	 hour
straight	 away–but	 we	 chose	 to	 show	 the	 various	 intermediate	 ways	 we	 could
have	 written	 the	 ratio	 because	 simple	 manipulations	 like	 these	 are	 sometimes
performed	in	the	text.

We	encounter	two	particularly	elaborate	dimensionful	numbers	in	the	book:	the
Gravitational	 constant,	 G	 =	 6.67	 m3/s2/kg	 and	 the	 Hubble	 constant,	 H	 =	 68
km/s/Mpc.	 These	 units	 might	 look	 abstract,	 but	 in	 fact	 they	 are	 easy	 to
comprehend.	For	example,	divide	G	by	a	distance	squared	and	then	multiply	 it
by	a	mass	and	you	end	up	with	a	number	with	the	units	of	acceleration	(m/s2):	if
the	distance	is	the	radius	of	the	Earth	and	the	mass	is	the	mass	of	the	Earth,	then
the	 corresponding	 acceleration	 is	 the	 acceleration	 due	 to	 gravity,	 for	 an	 object
dropped	close	to	the	Earth’s	surface.	Likewise,	the	units	of	the	Hubble	constant
tell	us	that	a	galaxy	1	Mpc	away	recedes	from	the	Earth	at	a	speed	of	68	km/s.

Occasionally	we	make	use	of	elementary	algebra.	For	example,	 the	calculation
of	 the	 speed	 of	 the	 car	 above	 could	 be	 carried	 out	 using	 the	 formula	 v	 =	 d/t
where	 d	 =	 100	 km	 and	 t	 =	 2	 hours,	 to	 give	 v	 =	 50	 km/h.	 A	 formula	 can	 be
transformed	into	another	equally	valid	one	by	performing	the	same	operation	on
each	 side	 of	 the	 equals	 sign,	 e.g.	 v	 ×	 t	 =	 vt	 =	 d/t	 ×	 t	 =	 d.	 In	 this	 case,	 we
multiplied	both	sides	of	 the	equation	by	 t	 to	deliver	an	equation	 telling	us	 that
the	distance	d	is	equal	to	the	product	of	the	speed,	v,	and	the	time,	t.	Notice	how



we	 can	write	 a	 product	 of	 two	 numbers	 either	 using	 an	 explicit	multiplication
symbol	(v	×	t)	or,	more	simply,	as	vt.	We	always	denote	division	by	a	backslash
symbol	(e.g.	d/t	×	t	means	‘d	divided	by	t	multiplied	by	t’,	which	is	simply	equal
to	d).

ELEMENTARY	PARTICLES

Atoms	 are	 the	 building	 blocks	 of	 the	 ordinary	matter	 we	 encounter	 on	 Earth.
They	are	approximately	an	ångstrom	across,	and	most	of	their	mass	resides	in	a
tiny	 central	 nucleus	built	 from	protons	 and	neutrons.	Protons	 are	 only	 about	 1
femtometre	in	diameter	and	they	carry	positive	electric	charge.	Orbiting	around
the	nucleus	are	the	electrons,	which	carry	negative	electric	charge	such	that	the
entire	atom	is	neutral.	The	simplest	atom	is	called	hydrogen	and	it	consists	of	a
single	proton	and	a	single	electron–it	 is	 the	most	abundant	 type	of	atom	in	 the
Universe.	The	way	 that	 the	 electrons	 are	 arranged	 around	 the	 nucleus	 governs
the	 way	 an	 atom	 interacts	 with	 other	 atoms,	 e.g.	 to	 produce	 molecules.	 The
entire	list	of	atoms	can	be	collated	in	the	Periodic	Table	(pp.	42–3).

We	 now	 know	 that	 protons	 and	 neutrons	 are	 themselves	 built	 from	 smaller
particles	called	quarks	and	gluons.	The	gluons	mediate	the	strong	nuclear	force,
which	binds	 the	quarks	 together.	 In	 total	 there	are	six	 types	of	quark,	although
only	 the	 lightest	 two	 of	 these	 are	 used	 in	 building	 protons	 and	 neutrons.	 The
electrons	 are	 also	 part	 of	 a	 bigger	 family	 of	 particles	 called	 leptons–the	muon
and	tau	leptons	are	like	heavier	versions	of	the	electron.	The	remaining	leptons
are	three	electrically	neutral	neutrinos.

Apart	 from	 the	 electromagnetic	 force,	 which	 causes	 particles	 with	 opposite
electric	charge	to	attract	each	other,	and	the	strong	nuclear	force,	there	is	also	the
weak	nuclear	force.	This	force	 is	much	weaker	 than	the	other	forces,	except	 in
very	high-energy	interactions,	and	it	 is	able	 to	make	neutrons	turn	into	protons
with	the	emission	of	an	electron	and	a	neutrino.	This	feature	plays	a	key	role	in
the	nuclear	fusion	processes	that	take	place	in	the	centre	of	the	Sun,	causing	it	to
burn.

Just	as	gluons	mediate	the	strong	force,	the	electromagnetic	force	is	mediated	by
photons,	which	can	also	be	regarded	as	particles	of	light.	The	weak	nuclear	force



is	mediated	by	the	W	and	Z	particles.

The	 Standard	 Model	 of	 particle	 physics	 is	 a	 very	 precise	 mathematical
framework	based	on	quantum	theory	that	describes	how	all	of	these	(i.e.	the	six
quarks,	 the	 six	 leptons,	 and	 their	 anti-matter	 partners)	 elementary	 particles
interact	with	each	other	through	the	exchange	of	photons,	gluons	and	W	and	Z
particles.	 The	 Standard	Model	 involves	 one	more	 particle,	 the	 Higgs	 particle,
whose	interactions	with	the	other	particles	are	responsible	for	their	having	mass.
Photons	and	gluons	do	not	 interact	with	 the	Higgs	particle	and	 they	have	zero
mass.

The	Standard	Model	does	not	include	the	gravitational	forces	between	particles,
and	 it	does	not	 include	dark	matter	 in	 its	 list	of	particles.	These	are	 two	of	 the
reasons	why	it	is	generally	regarded	as	being	incomplete.
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1	For	a	brief	resumé	on	the	known	elementary	particles,	see	the	Appendix.
2	This	is	the	27	km	circular	underground	tunnel	on	the	Franco-Swiss	border	near	Geneva,	in	which	protons
travelling	within	a	whisker	of	the	speed	of	light	are	made	to	collide.	The	debris	from	those	collisions	tells	us
how	particles	interact	at	energies	relevant	for	studies	into	the	Big	Bang.
3	 Specifically,	 in	 the	 Standard	Model	 of	 particle	 physics,	 the	Higgs	 field	 gives	mass	 to	 the	 quarks,	 the
electrically	charged	leptons	(the	electron	is	one	of	these)	and	the	carriers	of	the	weak	force	(the	W	and	Z
bosons).	Without	the	Higgs	field,	these	particles	would	have	zero	mass	and	zip	around	at	the	speed	of	light.
1	This	is	done	by	observing	how	the	solar	spectrum,	which	we	will	meet	in	the	next	chapter,	changes	over
time	periods	of	several	minutes.
2	MeV	is	a	convenient	unit	of	energy	used	 in	atomic	and	nuclear	physics.	For	a	primer	on	units,	 see	 the
Appendix.
3	More	precise	calculations	lead	to	an	age	of	around	4.6	billion	years.
1	Neutrinos	are	produced	in	vast	numbers	in	the	Sun,	but	most	of	them	pass	through	ordinary	matter	as	if	it
does	not	exist.	Since	they	are	so	elusive,	it	took	until	1956	before	they	were	finally	detected.	Today	there
are	several	neutrino	laboratories	around	the	world.
1	This	is	both	grammatically	ambiguous	and,	according	to	Einstein,	physically	ill-defined.
2	 If	 the	base	of	 the	buoy	was	exactly	on	 the	horizon	 then,	using	a	 little	geometry,	 the	horizon	would	be
dipped	below	the	horizontal	level	of	Mike’s	eyes	by	an	angle	of	4	km/5000	km	=	8	×	10-4	radians.	Because
Mike’s	eyes	are	not	perfect,	the	actual	dip	to	the	horizon	could	be	as	small	as	3	×	10-4	radians	or	as	big	as
13	×	10-4	 radians.	Now,	a	bit	more	geometry	 tells	us	 that	 the	 radius	of	 the	Earth,	R,	 is	 related	 to	 the	dip
angle	by	R	=	2h/(dip	angle)2.	Putting	in	the	two	extreme	dip	angles	gives	R	in	the	range	2000	km	to	36,000
km.
3	 Trinity	 House,	 which	 dates	 back	 to	 the	 reign	 of	 Henry	 VIII,	 is	 responsible	 for	 the	 provision	 and
maintenance	of	lighthouses	and	buoys	in	England,	Wales,	the	Channel	Islands	and	Gibraltar.
4	Strictly	speaking,	we	want	to	determine	the	mass	of	the	Earth.	Weight	is	a	measure	of	how	much	a	mass	is
pulled	under	gravity.	Your	weight	would	be	different	on	Earth	or	on	the	Moon,	even	though	your	mass	is
the	same.
5	Historically	 the	 distance	 to	 the	Moon	was	 obtained	 by	 the	 parallax	method	described	 in	 the	 following
chapter,	but	today	it’s	done	to	sub-millimetre	precision	by	bouncing	laser	light	off	mirrors	left	on	the	Moon
by	the	Apollo	astronauts.
6	This	angle	can	be	obtained	using	the	formula	in	the	figure	caption	if	we	anticipate	that	the	Earth’s	mass	is
6	 ×	 1024	 kg.	 Of	 course	 the	 logic	 is	 the	 other	 way	 around,	 i.e.	 we	 are	 proposing	 to	 use	 the	 measured
deflection	to	infer	the	Earth’s	mass.
7	The	force	can	be	deduced	by	measuring	the	wire’s	resistance	to	being	twisted.	This	is	done	by	timing	the
back-and-forth	oscillations	of	the	beam	that	occur	when	it	is	twisted	without	the	presence	of	the	heavy	balls.
1	This	is	the	‘distance	between	the	eyes’,	but	we	are	getting	a	bit	more	professional	with	our	language.
2	If	you	have	been	following	the	details	you	can	work	this	out	for	yourself:	the	tangent	of	0.314	arcseconds



is	equal	to	the	ratio	of	the	Earth–Sun	distance	to	the	distance	to	the	star.	Since	the	angle	is	very	small,	the
tangent	is	approximately	equal	to	the	angle	expressed	in	radians.	This	means	the	distance	is	equal	to	1	AU
divided	by	0.314	3600	×	π	180.
3	A	star	1	parsec	away	is	in	fact	149.6	×	106	(13600	×	π	/	180)	km	=	3.1	×	1013	km	away.	Light	travels	at	3
×	108	m/s,	so	this	distance	is	also	equal	to	3.26	light	years.
4	It	is	now	known	to	be	a	satellite	galaxy	of	the	Milky	Way,	some	199,000	light	years	from	Earth.
5	This	is	because	the	brightness	is	a	measure	of	the	light	power,	and	this	falls	away	with	the	square	of	the
distance	from	the	source.	For	example,	the	power	incident	on	a	1	cm2	light	detector	placed	1	metre	from	a
10-watt	light	source	will	equal	10	watts	×	1	cm2/(4π	×	1	m2).	This	is	just	a	statement	of	the	fact	that	(to	a
good	approximation)	the	light	bulb	emits	light	equally	in	every	direction	and	the	detector	receives	its	share
of	the	total.
6	It	was	realized	in	the	1940s	that	there	are	two	main	classes	of	Cepheid,	with	different	period–luminosity
relationships.	Not	knowing	this	led	to	some	confusion	in	the	early	days.
7	A	Type	1A	supernova	was	observed	in	M82	in	January	2014,	which	makes	for	an	accurate	determination
of	how	far	it	is	away	(see	below).
8	It	does	ignore	the	expansion	associated	with	the	Big	Bang,	of	which	there	will	be	more	in	the	next	two
chapters.
9	We	computed	this	40%	figure	in	our	earlier	book,	The	Quantum	Universe.
1	Although	this	looks	like	only	one	equation,	the	Greek	subscripts	can	vary	(they	label	projections	in	space
and	time),	giving	rise	to	several	distinct	equations.
1	The	percentage	error	on	the	mean	falls	as	1/√N	where	N	is	the	number	of	measurements.
2	We	will	get	seriously	interested	in	the	dimples	in	Chapter	8.
3	Although	‘expanding	Universe’	is	the	common	parlance,	‘stretching	Universe’	is	probably	better.
1	If	you	know	some	elementary	calculus	then	it’s	easier	just	to	say	that	H= /a	where	 =da/dt	and	then	we
obtain	a	as	a	function	of	the	time	t	by	square	rooting	each	side	of	the	equation	and	integrating.
2	Or	any	matter	moving	at	speeds	close	to	the	speed	of	light,	in	fact.
1	Recall	 that	 the	 spectral	 lines	 emitted	by	 a	galaxy	correspond	 to	 the	barcode	pattern	of	 light	 they	 emit.
Each	line	corresponds	to	a	particular	atomic	transition	that	 leads	 to	 the	emission	or	absorption	of	 light	of
one	particular	wavelength.	Each	spectral	 line	 is	strongly	peaked	at	 that	particular	wavelength,	but	 it	does
still	have	a	‘width’,	which	means	there	is	a	small	spread	of	wavelengths	about	the	peak	value.	You	can	see
this	small	spread	in	 the	spectra	we	showed	in	 the	plots	at	 the	end	of	Chapter	4	(the	spikes	are	not	super-
sharp).	This	width	contains	important	information,	as	Tully	and	Fisher	realized.
2	It	is	not	entirely	obvious	how	to	measure	the	size	of	a	galaxy,	because	you	have	to	decide	precisely	how
the	edge	of	the	galaxy	is	defined,	and	which	wavelengths	of	light	are	used	to	make	the	measurement.	We
use	the	so-called	‘2MASS’	measurements,	which	are	made	in	the	near-infrared	part	of	the	spectrum.	For	our
purposes,	it	doesn’t	matter	which	method	we	choose,	as	long	as	we	are	consistent	and	use	the	same	method
for	every	galaxy.	For	more	details,	see	http://iopscience.iop.org/article/10.1086/345794/pdf.



3	Don’t	be	concerned	 that	 the	quoted	uncertainty	for	 the	distance	 to	NGC0011	 is	only	4	Mpc;	a	10	Mpc
error	 is	 only	2.5	 times	 the	uncertainty,	which	 is	not	 so	unlikely	 that	 it	 should	worry	us	 (especially	 since
there	is	also	some	uncertainty	on	the	best-fit	line).	There	is	a	well-established	procedure	for	understanding
how	to	interpret	the	uncertainties	on	measurements,	but	we	do	not	propose	to	go	into	it	here.
4	In	fact,	if	we	went	out	to	higher	redshifts	(around	1.0	and	bigger),	the	equation	eventually	fails	because
the	points	no	 longer	 fall	 in	 the	vicinity	of	a	 straight	 line.	Even	 then,	astronomers	can	still	use	 redshift	 to
ascertain	distance.	It	would	take	us	too	far	off	track	to	discuss	here	exactly	how	they	do	that–suffice	to	say
that	 if	we	know	 the	average	material	composition	of	 the	Universe,	which	we	will	by	 the	end	of	 the	next
chapter,	the	Friedmann	equation	allows	us	to	tell	how	the	scale	factor	of	the	Universe	has	varied	with	time.
This	information	is	sufficient	to	determine	the	distance	to	any	object	whose	redshift	is	known.
5	All	of	the	sixteen	spiral	galaxies	we	selected	can	be	observed	and	measured	by	a	keen	amateur.
6	 By	 this	 we	 mean	 we	 can	 know	 of	 their	 existence	 by	 using	 some	 clever	 measuring	 device	 and	 our
intellects.	Eyes	are	only	one	of	a	range	of	‘seeing’	devices	available	to	scientists.	So	the	dark	matter	counts
as	being	part	of	the	observable	Universe.
7	To	figure	this	out	we	need	to	solve	the	Friedmann	equation	for	the	scale	factor	and	use	measurements	like
those	we	describe	in	the	next	chapter	to	quantify	how	many	particles	of	each	type	there	are	per	unit	volume
at	 the	present	 time.	Saying	the	Universe……	is	1	second	old	really	means	that	1	second	earlier	all	of	 the
particles	would	be	directly	on	top	of	each	other	unless	some	new	physics	steps	in	to	change	things.	As	we
will	see	in	the	Chapter	8,	perhaps	something	did	step	in	to	change	things,	but	at	times	earlier	than	we	are
considering	in	this	chapter.
8	The	theoretical	prediction	is	actually	a	little	high	for	lithium,	when	compared	to	the	data.	But	it	is	not	an
easy	thing	to	measure	and	there	is	quite	a	large	uncertainty	on	the	physics,	so	it	isn’t	regarded	as	too	serious
a	problem.
9	Precisely	how	photons	interact	with	charged	particles	is	the	stuff	of	Quantum	Electrodynamics	(QED),	the
theory	developed	by	Richard	Feynman,	Julian	Schwinger	and	Sin-Itiro	Tomonaga	in	the	late	1940s.	QED	is
explored	in	our	book	The	Quantum	Universe.
10	As	for	the	case	of	nucleosynthesis,	to	calculate	this	time	we	need	to	solve	the	Friedmann	equation.	We
also	 need	 to	 use	 simple	 atomic	 physics	 to	 determine	 the	 temperature	 at	which	 electrons	 tend	 to	 stick	 to
nuclei	and	make	atoms.
11	 For	 a	 fascinating	 but	 technical	 review	 see	 P.	 J.	 E.	 Peebles,	 ‘Discovery	 of	 the	 Hot	 Big	 Bang:	What
Happened	in	1948’,	European	Physical	Journal,	H39	(2014),	pp.	205–23.
1	The	CMB	photon	energy	density	is	much	larger	than	that	for	photons	of	non-CMB	origin,	such	as	those
from	stars.
2	Referring	back	to	Box	10	(pp.	144–5),	the	photon	mass	density	contributes	to	the	quantity	denoted	by	ρ	on
the	right-hand	side	of	the	Friedmann	equation.
3	 You	 can	 see	 how	 the	 density	 of	 the	 Universe	 controls	 its	 geometry	 by	 studying	 Box	 10	 again;	 for
example,	if	ρ	is	bigger	than	3/(8πG)H2	then	K	must	be	a	positive	number,	which	corresponds	to	a	spherical



geometry.	You	can	put	the	numbers	in	to	determine	the	numerical	value	of	this	critical	density	and	check
that	it	is	the	value	quoted	in	the	text.
4	We	need	the	word	‘ordinary’	because,	as	we	will	shortly	see,	 there’s	more	 to	 the	Universe	 than	atoms,
electrons,	photons	and	neutrinos.
1	You	might	 recall	 from	Chapter	 2	 that	 electron-positron	 annihilation	was	 responsible	 for	 1.02	MeV	 of
energy	in	the	fusion	chain	that	leads	to	helium	production	inside	the	Sun.
5	The	Milky	Way	is	a	member	of	a	different	galaxy	cluster,	known	as	the	Local	Group.	It	contains	around
50	small	galaxies	plus	2	big	spiral	galaxies	(the	Milky	Way	and	Andromeda).
6	This	corresponds	to	5100	kg/watt.
7	You	may	have	spotted	that	there	are	not	many	galaxies	in	the	region	of	the	hot	gas	(the	galaxies	are	in	the
blue	regions	in	fact).	Do	not	be	confused,	though:	it	is	very	well	known	to	astronomers	that	the	bulk	of	the
ordinary	mass	(i.e.	excluding	dark	matter)	in	the	Universe	is	in	gas	and	not	in	stars.	The	brightness	of	the	X-
rays	allows	astronomers	to	determine	how	much	mass	resides	in	the	gas	(more	gas	means	more	X-rays),	and
this	 is	considerably	more	 than	resides	 in	 the	galaxies	of	stars.	The	galaxies	 in	Figure	7.1	 follow	the	dark
matter	because,	unlike	the	gas,	they	are	unlikely	to	interact	with	each	other	much.	The	galaxies	are	not	the
important	parts	of	the	Bullet	Cluster	photo.
8	You	can’t	spot	this	just	by	looking	at	the	equation;	you	need	to	solve	it.	Roughly	speaking,	as	time	passes
we	 become	 increasingly	 aware	 of	 any	 curvature	 to	 space	 (i.e.	 the	 density	 increasingly	 deviates	 from	 the
critical	density)–so	if	we	cannot	discern	any	curvature	now	then	we	most	certainly	couldn’t	discern	any	in
the	past	(i.e.	the	density	was	closer	to	critical	in	the	past).
9	The	HR	diagram	is	named	after	Ejnar	Herzsprung	and	Henry	Norris	Russell,	who	first	presented	stellar
data	in	this	way,	independently	from	each	other,	in	1911.
10	Recall	this	is	the	number	that	says	how	much	space	is	stretched	or	shrunk	relative	to	its	size	today.
11	The	fact	that	47	billion	light	years	is	bigger	than	the	time	since	the	Big	Bang	multiplied	by	the	speed	of
light	 (=	 14	 billion	 light	 years)	 is	 because	 the	 47	 billion	 years	 refers	 to	 how	 far	 away	 the	 edge	 of	 the
observable	Universe	is	now.	In	the	past,	this	distance	was	smaller	owing	to	the	fact	that	space	expands.
12	We	worked	out	the	volume	of	the	observable	Universe	using	the	formula	 	for	the	volume	of	a
sphere	of	radius	r,	and	we	worked	out	the	total	mass	by	multiplying	this	volume	by	the	mass	density.
1	Dark	matter	and	neutrinos	were	also	present	at	this	time,	but	they	did	not	interact	much	with	the	particles
in	the	plasma.
2	The	cosmological	constant	played	a	very	minor	role	early	on	in	the	Universe’s	expansion.
3	The	horizon	and	flatness	problems	are	both	‘just	solved’	if	the	Universe	grew	during	its	period	of	inflation
by	at	least	as	much	as	it	has	grown	since	the	inflation	ended.	This	isn’t	obviously	the	case	and	to	show	it
would	be	too	much	of	a	detour	for	this	book.	It	means	the	Universe	inflated	at	the	very	least	by	a	factor	of
around	500	million,	which	is	the	amount	the	Universe	has	expanded	from	the	time	of	nucleosynthesis	until
today.	 In	 practice,	 most	 theorists	 expect	 that	 it	 inflated	 for	 vastly	 more	 than	 this–a	 factor	 of	 1026	 is
commonly	regarded	as	the	minimum	amount	of	inflation.



1	A	very	brief	introduction	to	the	particles	of	the	Standard	Model	can	be	found	in	the	Appendix	at	the	end
of	the	book.
4	 The	 pioneering	 work	 was	 done	 by	 Andrei	 Linde	 and,	 independently,	 Andreas	 Albrecht	 and	 Paul
Steinhardt,	then	of	the	University	of	Pennsylvania	in	the	USA.
5	In	fact,	the	first	calculations	of	structure	formation	were	made	before	the	Cambridge	meeting,	in	1981,	by
Viatcheslav	Mukhanov	and	Gennady	Chibisov,	also	of	the	Lebedev	Institute.
6	We	show	how	the	Uncertainty	Principle	comes	about,	starting	from	the	laws	of	quantum	physics,	in	our
book	The	Quantum	Universe.
7	This	is	similar	to	the	production	of	Hawking	radiation	from	a	black	hole.
8	Because	the	quantum-induced	ripples	have	a	size	bigger	than	the	de	Sitter	horizon.
9	 To	 be	 precise,	 the	 CMB	 cannot	 be	 used	 to	 extract	 unique	 values	 for	 all	 of	 the	 key	 cosmological
parameters.	 In	 other	 words,	 there	 are	 other	 combinations	 of	 parameters	 that	 also	 agree	with	 the	 data	 in
Figure	8.9.	The	 remarkable	 thing	 is	 that	agreement	with	 the	data	 is	 found	using	 the	 same	parameters	we
found	in	the	last	chapter.
10	 The	 ‘stones	 thrown	 in	 water’	 analogy	 has	 its	 limitations,	 because	 really	 we	 should	 think	 of	 the
perturbations	generated	by	inflation	more	as	a	pressing	down	or	lifting	up	the	surface	of	the	water	and	then
releasing	 it	 from	 rest.	 The	 stones	 analogy	 is	 helpful,	 however,	 in	 distinguishing	 between	 the	 two
possibilities	 that	 the	perturbations	were	generated	‘all	at	once	and	everywhere’	or	 that	 they	are	generated
progressively	over	time.	The	former	case	corresponds	to	the	stones	all	entering	the	water	at	the	same	time
and	leads	to	waves	of	equal	radii.
11	 For	 the	 more	 mathematically	 inclined,	 Figure	 8.9	 is	 closely	 related	 to	 the	 Fourier	 transform	 of	 the
correlation	function.
1	 Because	 the	 Universe	 is	 expanding	 all	 the	 time,	 we	 need	 to	 be	 a	 little	 careful	 in	 defining	 times	 and
distances.	If	we	measure	distances	(like	the	wavelength	λ)	using	rulers	that	stretch	with	the	expansion	of	the
Universe	 (the	 grid	 lines	 on	Figure	 8.6	 could	 be	 used	 to	measure	 distances	 in	 this	way),	 then	 the	 time	T
should	be	what	 cosmologists	 call	 the	 conformal	 time,	which	 is	 the	distance	 an	unhindered	beam	of	 light
would	travel	in	that	interval	of	time	divided	by	the	speed	of	light.
1	 The	 possibility	 of	 strings	 is	 a	 natural	 extension	 of	 the	 idea	 of	 a	 particle.	 While	 particles	 are	 zero-
dimensional	objects,	i.e.	points	in	space,	strings	are	one-dimensional	objects,	i.e.	lines	in	space.
2	More	recently,	the	idea	that	‘the	world	we	are	part	of	is	but	one	of	a	plurality	of	worlds’	is	a	key	idea	in
the	‘modal	realism’	advocated	by	the	late	David	Lewis	in	his	1986	book	On	the	Plurality	of	Worlds.	Max
Tegmark’s	 book	Our	 Mathematical	 Universe	 (2014)	 provides	 a	 thought-provoking	 introduction	 to	 how
modern	physics	leads	to	what	he	refers	to	as	the	four	levels	of	the	Multiverse.
3	 This	 is	 the	 title	 of	 theoretical	 physicist	 Eugene	 Wigner’s	 1960	 essay	 that	 ends,	 ‘The	 miracle	 of	 the
appropriateness	of	 the	 language	of	mathematics	for	 the	formulation	of	 the	 laws	of	physics	 is	a	wonderful
gift	 which	 we	 neither	 understand	 nor	 deserve.’	 It	 echoes	 Einstein’s	 quote:	 ‘The	most	 incomprehensible
thing	about	the	universe	is	that	it	is	comprehensible.’



4	In	One	World:	The	Interaction	of	Science	and	Theology	(2007).
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